Names | |||
---|---|---|---|
Preferred IUPAC name Toluene [1] | |||
Systematic IUPAC name Methylbenzene | |||
Other names | |||
Identifiers | |||
3D model (JSmol) | |||
Abbreviations | PhMe MePh BnH Tol | ||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
DrugBank | |||
ECHA InfoCard | 100.003.297 | ||
KEGG | |||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
UN number | 1294 | ||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
C6H5CH3 | |||
Molar mass | 92.141 g·mol−1 | ||
Appearance | Colorless liquid [3] | ||
Odor | sweet, pungent, benzene-like [4] | ||
Density | 0.8623 g/mL (25 °C) [2] | ||
Melting point | −95.0 °C (−139.0 °F; 178.2 K) [2] | ||
Boiling point | 110.60 °C (231.08 °F; 383.75 K) [2] | ||
0.54 g/L (5 °C) 0.519 g/L (25 °C) 0.63 g/L (45 °C) 1.2 g/L (90 °C) [5] | |||
log P | 2.73 [6] | ||
Vapor pressure | 2.8 kPa (20 °C) [4] | ||
−66.1·10−6 cm3/mol [7] | |||
Thermal conductivity | 0.1310 W/(m·K) (25 °C) [8] | ||
Refractive index (nD) | 1.4941 (25 °C) [2] | ||
Viscosity | 0.560 mPa·s (25 °C) [9] | ||
Structure | |||
0.375 D [10] | |||
Thermochemistry [11] | |||
Heat capacity (C) | 157.3 J/(mol·K) | ||
Std enthalpy of formation (ΔfH⦵298) | 12.4 kJ/mol | ||
Std enthalpy of combustion (ΔcH⦵298) | 3.910 MJ/mol | ||
Hazards | |||
Occupational safety and health (OHS/OSH): | |||
Main hazards | highly flammable | ||
GHS labelling: | |||
Danger | |||
H225, H304, H315, H336, H361d, H373 | |||
P210, P240, P301+P310, P302+P352, P308+P313, P314, P403+P233 | |||
NFPA 704 (fire diamond) | |||
Flash point | 4 °C (39 °F; 277 K) [12] | ||
480 [12] °C (896 °F; 753 K) | |||
Explosive limits | 1.1–7.1% [12] | ||
Threshold limit value (TLV) | 50 mL/m3, 190 mg/m3 | ||
Lethal dose or concentration (LD, LC): | |||
LC50 (median concentration) | >26700 ppm (rat, 1 h) 400 ppm (mouse, 24 h) [13] | ||
LCLo (lowest published) | 55,000 ppm (rabbit, 40 min) [13] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible) | TWA 200 ppm C 300 ppm 500 ppm (10-minute maximum peak) [4] | ||
REL (Recommended) | TWA 100 ppm (375 mg/m3) ST 150 ppm (560 mg/m3) [4] | ||
IDLH (Immediate danger) | 500 ppm [4] | ||
Safety data sheet (SDS) | SIRI.org | ||
Related compounds | |||
Related aromatic hydrocarbons | benzene xylene naphthalene | ||
Related compounds | methylcyclohexane methylcyclohexene | ||
Supplementary data page | |||
Toluene (data page) | |||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Toluene ( /ˈtɒl.juiːn/ ), also known as toluol ( /ˈtɒl.ju.ɒl,-ɔːl,-oʊl/ ), is a substituted aromatic hydrocarbon [15] with the chemical formula C6H5CH3, often abbreviated as PhCH3, where Ph stands for the phenyl group. It is a colorless, water-insoluble liquid with the odor associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group (CH3) attached to a phenyl group by a single bond. As such, its systematic IUPAC name is methylbenzene. Toluene is predominantly used as an industrial feedstock and a solvent.
As the solvent in some types of paint thinner, permanent markers, contact cement and certain types of glue, toluene is sometimes used as a recreational inhalant [16] and has the potential of causing severe neurological harm. [17] [18]
The compound was first isolated in 1837 through a distillation of pine oil by Pierre Joseph Pelletier and Filip Neriusz Walter, who named it rétinnaphte. [19] [20] In 1841, Henri Étienne Sainte-Claire Deville isolated a hydrocarbon from balsam of Tolu (an aromatic extract from the tropical Colombian tree Myroxylon balsamum ), which Deville recognized as similar to Walter's rétinnaphte and to benzene; hence he called the new hydrocarbon benzoène. [21] [22] [23] In 1843, Jöns Jacob Berzelius recommended the name toluin. [24] In 1850, French chemist Auguste Cahours isolated from a distillate of wood a hydrocarbon which he recognized as similar to Deville's benzoène and which Cahours named toluène. [25] [26]
The distance between carbon atoms in the toluene ring is 0.1399 nm. The C-CH3 bond is longer at 0.1524 nm, while the average C-H bond length is 0.111 nm. [27]
Toluene reacts as a normal aromatic hydrocarbon in electrophilic aromatic substitution. [28] [29] [30] Because the methyl group has greater electron-releasing properties than a hydrogen atom in the same position, toluene is more reactive than benzene toward electrophiles. It undergoes sulfonation to give p-toluenesulfonic acid, and chlorination by Cl2 in the presence of FeCl3 to give ortho and para isomers of chlorotoluene.
Nitration of toluene gives mono-, di-, and trinitrotoluene, all of which are widely used. Dinitrotoluene is the precursor to toluene diisocyanate, a precursor to polyurethane foam. Trinitrotoluene (TNT) is an explosive.
Complete hydrogenation of toluene gives methylcyclohexane. The reaction requires a high pressure of hydrogen and a catalyst.
The C-H bonds of the methyl group in toluene are benzylic, therefore they are weaker than C-H bonds in simpler alkanes. Reflecting this weakness, the methyl group in toluene undergoes a variety of free radical reactions. For example, when heated with N-bromosuccinimide (NBS) in the presence of AIBN, toluene converts to benzyl bromide. The same conversion can be effected with elemental bromine in the presence of UV light or even sunlight.
Toluene may also be brominated by treating it with HBr and H2O2 in the presence of light. [31]
Benzoic acid and benzaldehyde are produced commercially by partial oxidation of toluene with oxygen. Typical catalysts include cobalt or manganese naphthenates. [32] Related but laboratory-scale oxidations involve the use of potassium permanganate to yield benzoic acid and chromyl chloride to yield benzaldehyde (Étard reaction).
The methyl group in toluene undergoes deprotonation only with very strong bases; its pKa is estimated using acidity trends to be approximately 43 in dimethyl sulfoxide (DMSO) [33] [34] and its ion pair acidity is extrapolated to be 41.2 in cyclohexylamine (Cesium Cyclohexylamide) using a Bronsted correlation. [35] [36]
Toluene is miscible (soluble in all proportions) with ethanol, benzene, diethyl ether, acetone, chloroform, glacial acetic acid and carbon disulfide, but immiscible with water. [37]
Toluene occurs naturally at low levels in crude oil and is a byproduct in the production of gasoline by a catalytic reformer or ethylene cracker. It is also a byproduct of the production of coke from coal. Final separation and purification is done by any of the distillation or solvent extraction processes used for BTX aromatics (benzene, toluene, and xylene isomers). [15]
Toluene can be prepared by a variety of methods. For example, benzene reacts with methanol in presence of a solid acid to give toluene and water: [15]
Toluene is one of the most abundantly produced chemicals. Its main uses are (1) as a precursor to benzene and xylenes, (2) as a solvent for thinners, paints, lacquers, adhesives, and (3) as an additive for gasoline. [15]
Toluene is converted to benzene via hydrodealkylation:
Its transalkylation gives a mixture of benzene and xylenes.
Toluene is widely used in the paint, dye, rubber, chemical, glue, printing, and pharmaceutical industries as a solvent. [38] Nail polish, paintbrush cleaners, and stain removers may contain toluene. Manufacturing of explosives (TNT) uses it as well. Toluene is also found in cigarette smoke and car exhaust. If not in contact with air, toluene can remain unchanged in soil or water for a long time. [39]
Toluene is a common solvent, e.g. for paints, paint thinners, silicone sealants, [40] many chemical reactants, rubber, printing ink, adhesives (glues), lacquers, leather tanners, and disinfectants. [15]
Toluene is an octane booster in gasoline fuels for internal combustion engines as well as jet fuel and turbocharged engines in Formula One. [41]
In Australia in 2003, toluene was found to have been illegally combined with petrol in fuel outlets for sale as standard vehicular fuel. Toluene incurs no fuel excise tax, while other fuels are taxed at more than 40%, providing a greater profit margin for fuel suppliers. The extent of toluene substitution is claimed to be 60%. [42] [43]
In the laboratory, toluene is used as a solvent for carbon nanomaterials, including nanotubes and fullerenes, and it can also be used as a fullerene indicator. The color of the toluene solution of C60 is bright purple. Toluene is used as a cement for fine polystyrene kits (by dissolving and then fusing surfaces) as it can be applied very precisely by brush and contains none of the bulk of an adhesive. Toluene can be used to break open red blood cells in order to extract hemoglobin in biochemistry experiments. Toluene has also been used as a coolant for its good heat transfer capabilities in sodium cold traps used in nuclear reactor system loops. Toluene had also been used in the process of removing the cocaine from coca leaves in the production of Coca-Cola syrup. [44]
The environmental and toxicological effects of toluene have been extensively studied. [45]
Toluene is irritating to the eyes, skin, and respiratory tract. It is absorbed slowly through the skin. It can cause systemic toxicity by inhalation or ingestion. Inhalation is the most common route of exposure. Symptoms of toluene poisoning include central nervous system effects (headache, dizziness, drowsiness, ataxia, euphoria, tremors, hallucinations, seizures, and coma), chemical pneumonitis, respiratory depression, ventricular arrhythmias, nausea, vomiting, and electrolyte imbalances. [38]
Inhalation of toluene in low to moderate levels can cause tiredness, confusion, weakness, drunken-type actions, memory loss, nausea, loss of appetite, hearing loss, [46] [47] [48] and colour vision loss. [49] Some of these symptoms usually disappear when exposure is stopped. Inhaling high levels of toluene in a short time may cause light-headedness, nausea, or sleepiness, unconsciousness, and even death. [50] [51] Toluene is, however, much less toxic than benzene, and as a consequence, largely replaced it as an aromatic solvent in chemical preparation. The US Environmental Protection Agency (EPA) states that the carcinogenic potential of toluene cannot be evaluated due to insufficient information. [52] In 2013, worldwide sales of toluene amounted to about 24.5 billion US dollars. [53]
Toluene occurs as an indoor air pollutant in a number of processes including electrosurgery, and can be removed from the air with an activated carbon filter. [54]
Similarly to many other solvents such as 1,1,1-trichloroethane and some alkylbenzenes, toluene has been shown to act as a non-competitive NMDA receptor antagonist and GABAA receptor positive allosteric modulator. [55] Additionally, toluene has been shown to display antidepressant-like effects in rodents in the forced swim test (FST) and the tail suspension test (TST), [55] likely due to its NMDA antagonist properties.
Toluene is sometimes used as a recreational inhalant ("glue sniffing"), likely on account of its euphoric and dissociative effects. [55]
Toluene inhibits excitatory ion channels such as the NMDA receptor, nicotinic acetylcholine receptor, and the serotonin 5-HT3 receptor. It also potentiates the function of inhibitory ion channels, such as the GABAA and glycine receptors. In addition, toluene disrupts voltage-gated calcium channels and ATP-gated ion channels. [56]
Toluene is used as an intoxicative inhalant in a manner unintended by manufacturers. People inhale toluene-containing products (e.g., paint thinner, contact cement, correction pens, model glue, etc.) for its intoxicating effect. The possession and use of toluene and products containing it are regulated in many jurisdictions, for the supposed reason of preventing minors from obtaining these products for recreational drug purposes. As of 2007, 24 US states had laws penalizing use, possession with intent to use, and/or distribution of such inhalants. [57] In 2005 the European Union banned the general sale of products consisting of greater than 0.5% toluene. [58]
Several types of fungi including Cladophialophora , Exophiala , Leptodontidium (syn. Leptodontium), Pseudeurotium zonatum , and Cladosporium sphaerospermum , and certain species of bacteria can degrade toluene using it as a source of carbon and energy. [59]
Inhalants are a broad range of household and industrial chemicals whose volatile vapors or pressurized gases can be concentrated and breathed in via the nose or mouth to produce intoxication, in a manner not intended by the manufacturer. They are inhaled at room temperature through volatilization or from a pressurized container, and do not include drugs that are sniffed after burning or heating.
Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.
Naphthalene is an organic compound with formula C
10H
8. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs.
In organic chemistry, xylene or xylol are any of three organic compounds with the formula (CH3)2C6H4. They are derived from the substitution of two hydrogen atoms with methyl groups in a benzene ring; which hydrogens are substituted determines which of three structural isomers results. It is a colorless, flammable, slightly greasy liquid of great industrial value.
Mesitylene or 1,3,5-trimethylbenzene is a derivative of benzene with three methyl substituents positioned symmetrically around the ring. The other two isomeric trimethylbenzenes are 1,2,4-trimethylbenzene (pseudocumene) and 1,2,3-trimethylbenzene (hemimellitene). All three compounds have the formula C6H3(CH3)3, which is commonly abbreviated C6H3Me3. Mesitylene is a colorless liquid with sweet aromatic odor. It is a component of coal tar, which is its traditional source. It is a precursor to diverse fine chemicals. The mesityl group (Mes) is a substituent with the formula C6H2Me3 and is found in various other compounds.
Terephthalic acid is an organic compound with formula C6H4(CO2H)2. This white solid is a commodity chemical, used principally as a precursor to the polyester PET, used to make clothing and plastic bottles. Several million tons are produced annually. The common name is derived from the turpentine-producing tree Pistacia terebinthus and phthalic acid.
Ethylbenzene is an organic compound with the formula C6H5CH2CH3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline. This monocyclic aromatic hydrocarbon is important in the petrochemical industry as a reaction intermediate in the production of styrene, the precursor to polystyrene, a common plastic material. In 2012, more than 99% of ethylbenzene produced was consumed in the production of styrene.
p-Xylene (para-xylene) is an aromatic hydrocarbon. It is one of the three isomers of dimethylbenzene known collectively as xylenes. The p- stands for para-, indicating that the two methyl groups in p-xylene occupy the diametrically opposite substituent positions 1 and 4. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and m-xylene. All have the same chemical formula C6H4(CH3)2. All xylene isomers are colorless and highly flammable. The odor threshold of p-xylene is 0.62 parts per million (ppm).
Chlorobenzene (abbreviated PhCl) is an aryl chloride and the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals.
o-Xylene (ortho-xylene) is an aromatic hydrocarbon with the formula C6H4(CH3)2, with two methyl substituents bonded to adjacent carbon atoms of a benzene ring (the ortho configuration). It is a constitutional isomer of m-xylene and p-xylene, the mixture being called xylene or xylenes. o-Xylene is a colourless slightly oily flammable liquid.
m-Xylene (meta-xylene) is an aromatic hydrocarbon. It is one of the three isomers of dimethylbenzene known collectively as xylenes. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and p-xylene. All have the same chemical formula C6H4(CH3)2. All xylene isomers are colorless and highly flammable.
1,2,4-Trimethylbenzene, also known as pseudocumene, is an organic compound with the chemical formula C6H3(CH3)3. Classified as an aromatic hydrocarbon, it is a flammable colorless liquid with a strong odor. It is nearly insoluble in water but soluble in organic solvents. It occurs naturally in coal tar and petroleum (about 3%). It is one of the three isomers of trimethylbenzene.
Methylcyclohexane (cyclohexylmethane) is an organic compound with the molecular formula is CH3C6H11. Classified as saturated hydrocarbon, it is a colourless liquid with a faint odor.
Durene, or 1,2,4,5-tetramethylbenzene, is an organic compound with the formula C6H2(CH3)4. It is a colourless solid with a sweet odor. The compound is classified as an alkylbenzene. It is one of three isomers of tetramethylbenzene, the other two being prehnitene (1,2,3,4-tetramethylbenzene) and isodurene (1,2,3,5-tetramethylbenzene). Durene has an unusually high melting point (79.2 °C), reflecting its high molecular symmetry.
Hexachlorobutadiene, (often abbreviated as "HCBD") Cl2C=C(Cl)C(Cl)=CCl2, is a colorless liquid at room temperature that has an odor similar to that of turpentine. It is a chlorinated aliphatic diene with niche applications but is most commonly used as a solvent for other chlorine-containing compounds. Structurally, it has a 1,3-butadiene core, but fully substituted with chlorine atoms.
Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar hexagonal ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms, benzene is classed as a hydrocarbon.
1,2,3-Trimethylbenzene is an organic compound with the chemical formula C6H3(CH3)3. Classified as an aromatic hydrocarbon, it is a flammable colorless liquid. It is nearly insoluble in water but soluble in organic solvents.
In organic chemistry, transalkylation is a chemical reaction involving the transfer of an alkyl group from one organic compound to another. The reaction is used for the transfer of methyl and ethyl groups between benzene rings. This is of particular value in the petrochemical industry to manufacture p-xylene, styrene, and other aromatic compounds. Motivation for using transalkylation reactions is based on a difference in production and demand for benzene, toluene, and xylenes. Transalkylation can convert toluene, which is overproduced, into benzene and xylene, which are under-produced. Zeolites are often used as catalysts in transalkylation reactions.
In the petroleum refining and petrochemical industries, the initialism BTX refers to mixtures of benzene, toluene, and the three xylene isomers, all of which are aromatic hydrocarbons. The xylene isomers are distinguished by the designations ortho –, meta –, and para – as indicated in the adjacent diagram. If ethylbenzene is included, the mixture is sometimes referred to as BTEX.
Petroleum benzine is a hydrocarbon-based solvent mixture that is classified by its physical properties rather than a specific chemical composition. This complicates distinction within the long list of petroleum distillate solvent mixtures: mineral spirits, naphtha, petroleum naptha, white gas, white spirits, turps substitute, mineral turpentine, petroleum ether, ligroin, and Stoddard solvent.
Toluene and xylene are preferred IUPAC names, but are not freely substitutable; toluene is substitutable under certain conditions, but only for general nomenclature (see P-15.1.8 for a general substitution rules for retained names).