18-Methoxycoronaridine

Last updated
18-Methoxycoronaridine
18-Methoxycoronaridine.svg
18-methoxycoronaridine 3D BS.png
Clinical data
Other names
  • (−)-18-methoxycoronaridine
  • Zolunicant
Routes of
administration
Oral
Legal status
Legal status
Identifiers
  • methyl (1S,15R,17R,18S)-17-(2-methoxyethyl)-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C22H28N2O3
Molar mass 368.477 g·mol−1
3D model (JSmol)
  • COCC[C@H]1C[C@@H]2C[C@@]3([C@H]1N(C2)CCc4c3[nH]c5c4cccc5)C(=O)OC
  • InChI=1S/C22H28N2O3/c1-26-10-8-15-11-14-12-22(21(25)27-2)19-17(7-9-24(13-14)20(15)22)16-5-3-4-6-18(16)23-19/h3-6,14-15,20,23H,7-13H2,1-2H3/t14-,15+,20+,22-/m1/s1 X mark.svgN
  • Key:DTJQBBHYRQYDEG-SVBQBFEESA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

18-Methoxycoronaridine (18-MC, or MM-110), also known as zolunicant, is a derivative of ibogaine invented in 1996 by the research team around the pharmacologist Stanley D. Glick from the Albany Medical College and the chemists Upul K. Bandarage and Martin E. Kuehne from the University of Vermont. In animal studies it has proved to be effective at reducing self-administration of morphine, cocaine, methamphetamine, nicotine and sucrose. [1] [2] It has also been shown to produce anorectic effects in obese rats, most likely due to the same actions on the reward system which underlie its anti-addictive effects against drug addiction. [3]

Contents

18-MC was in the early stages of human testing by the California-based drug development company Savant HWP before being acquired by MindMed, a Canadian pharmaceutical company newly listed on the NASDAQ in April 2021. [4] [5] In 2002 the research team began raising funds for human trials, but were unable to secure the estimated $5 million needed. [6] In 2010, Obiter Research, a chemical manufacturer in Champaign, Illinois, signed a patent license with Albany Medical College and the University of Vermont, allowing them the right to synthesize and market 18-MC and other congeners. In 2012 the National Institute on Drug Abuse gave a $6.5 million grant to Savant HWP for human trials. [5] In 2017 it went into Phase-II trials in Brazil for treatment of Leishmaniasis at the Evandro Chagas Institute, [7] but not for approval for use as a treatment for drug addiction. A phase 2a study of MM-110 treatment in patients experiencing opioid withdrawal is set to commence in Q2 2022. [8]

Pharmacology

18-MC is a α3β4 nicotinic antagonist and, in contrast to ibogaine, has no affinity at the α4β2 subtype nor at NMDA-channels nor at the serotonin transporter, [9] and has significantly reduced affinity for sodium channels and for the σ receptor, but retains modest affinity for μ-opioid receptors where it acts as an agonist, [10] and κ-opioid receptors. [11] The sites of action in the brain include the medial habenula, interpeduncular nucleus, [12] [13] [14] dorsolateral tegmentum and basolateral amygdala. [15] (±)-18-MC competitively inhibits α9α10 nAChRs with potencies higher than that at α3β4 and α4β2 nAChRs and directly blocks CaV2.2. [16]

Chemistry

Derivatives

A number of derivatives of 18-MC have been developed, with several of them being superior to 18-MC itself, the methoxyethyl congener ME-18-MC being more potent than 18-MC with similar efficacy, and the methylamino analogue 18-MAC being more effective than 18-MC with around the same potency. These compounds were also found to act as selective α3β4 nicotinic acetylcholine antagonists, with little or no effect on NMDA receptors. [17] [18] Iboga alkaloids.png

See also

Related Research Articles

<span class="mw-page-title-main">Epibatidine</span> Toxic chemical from some poison dart frogs

Epibatidine is a chlorinated alkaloid that is secreted by the Ecuadoran frog Epipedobates anthonyi and poison dart frogs from the Ameerega genus. It was discovered by John W. Daly in 1974, but its structure was not fully elucidated until 1992. Whether epibatidine is the first observed example of a chlorinated alkaloid remains controversial, due to challenges in conclusively identifying the compound from the limited samples collected by Daly. By the time that high-resolution spectrometry was used in 1991, there remained less than one milligram of extract from Daly's samples, raising concerns about possible contamination. Samples from other batches of the same species of frog failed to yield epibatidine.

<span class="mw-page-title-main">Ibogaine</span> Psychoactive substance found in plants in the family Apocynaceae

Ibogaine is a naturally occurring psychoactive substance found in plants in the family Apocynaceae such as Tabernanthe iboga, Voacanga africana, and Tabernaemontana undulata. It is a psychedelic with dissociative properties.

<span class="mw-page-title-main">Voacangine</span> Chemical compound

Voacangine is an alkaloid found predominantly in the root bark of the Voacanga africana tree, as well as in other plants such as Tabernanthe iboga, Tabernaemontana africana, Trachelospermum jasminoides, Tabernaemontana divaricata and Ervatamia yunnanensis. It is an iboga alkaloid which commonly serves as a precursor for the semi-synthesis of ibogaine. It has been demonstrated in animals to have similar anti-addictive properties to ibogaine itself. It also potentiates the effects of barbiturates. Under UV-A and UV-B light its crystals fluoresce blue-green, and it is soluble in ethanol.

κ-opioid receptor Protein-coding gene in the species Homo sapiens, named for ketazocine

The κ-opioid receptor or kappa opioid receptor, abbreviated KOR or KOP for its ligand ketazocine, is a G protein-coupled receptor that in humans is encoded by the OPRK1 gene. The KOR is coupled to the G protein Gi/G0 and is one of four related receptors that bind opioid-like compounds in the brain and are responsible for mediating the effects of these compounds. These effects include altering nociception, consciousness, motor control, and mood. Dysregulation of this receptor system has been implicated in alcohol and drug addiction.

<span class="mw-page-title-main">Lobeline</span> Chemical compound

Lobeline is a piperidine alkaloid found in a variety of plants, particularly those in the genus Lobelia, including Indian tobacco, Devil's tobacco, great lobelia, Lobelia chinensis, and Hippobroma longiflora. In its pure form, it is a white amorphous powder which is freely soluble in water.

Psychological dependence is a cognitive disorder that involves emotional–motivational withdrawal symptoms—e.g. anxiety and anhedonia—upon cessation of prolonged drug abuse or certain repetitive behaviors. It develops through frequent exposure to a psychoactive substance or behavior, though behavioral dependence is less talked about. The specific mechanism involves a neuronal counter-adaptation, which could be mediated through changes in neurotransmitter activity or altered receptor expression. Environmental enrichment and physical activity can attenuate withdrawal symptoms.

<span class="mw-page-title-main">Tebanicline</span> Chemical compound

Tebanicline is a potent synthetic nicotinic (non-opioid) analgesic drug developed by Abbott. It was developed as a less toxic analog of the potent poison dart frog-derived compound epibatidine, which is about 200 times stronger than morphine as an analgesic, but produces extremely dangerous toxic side effects. Like epibatidine, tebanicline showed potent analgesic activity against neuropathic pain in both animal and human trials, but with far less toxicity than its parent compound. It acts as a partial agonist at neuronal nicotinic acetylcholine receptors, binding to both the α3β4 and the α4β2 subtypes.

<span class="mw-page-title-main">MTEP</span> Chemical compound

3-( ethynyl)pyridine (MTEP) is a research drug that was developed by Merck & Co. as a selective allosteric antagonist of the metabotropic glutamate receptor subtype mGluR5. Identified through structure-activity relationship studies on an older mGluR5 antagonist MPEP, MTEP has subsequently itself acted as a lead compound for newer and even more improved drugs.

<span class="mw-page-title-main">Noribogaine</span> Principal psychoactive metabolite of the oneirogen ibogaine

Noribogaine, or 12-hydroxyibogamine, is the principal psychoactive metabolite of the oneirogen ibogaine. It is thought to be involved in the antiaddictive effects of ibogaine-containing plant extracts, such as Tabernanthe iboga.

<span class="mw-page-title-main">Opiate</span> Substance derived from opium

An opiate is an alkaloid substance derived from opium. It has a different meaning from the similar term opioid, used to designate all substances, both natural and synthetic, that bind to opioid receptors in the brain. Opiates are alkaloid compounds naturally found in the opium poppy plant Papaver somniferum. The psychoactive compounds found in the opium plant include morphine, codeine, and thebaine. Opiates have long been used for a variety of medical conditions, with evidence of opiate trade and use for pain relief as early as the eighth century AD. Most opiates are considered drugs with moderate to high abuse potential and are listed on various "Substance-Control Schedules" under the Uniform Controlled Substances Act of the United States of America.

The alpha-3 beta-4 nicotinic receptor, also known as the α3β4 receptor and the ganglion-type nicotinic receptor, is a type of nicotinic acetylcholine receptor, consisting of α3 and β4 subunits. It is located in the autonomic ganglia and adrenal medulla, where activation yields post- and/or presynaptic excitation, mainly by increased Na+ and K+ permeability.

<span class="mw-page-title-main">Coronaridine</span> Chemical compound

Coronaridine, also known as 18-carbomethoxyibogamine, is an alkaloid found in Tabernanthe iboga and related species, including Tabernaemontana divaricata for which it was named.

<span class="mw-page-title-main">Ibogamine</span> Anti-convulsant, anti-addictive CNS stimulant alkaloid

Ibogamine is an anti-convulsant, anti-addictive, CNS stimulant alkaloid found in Tabernanthe iboga and Crepe Jasmine. Basic research related to how addiction affects the brain has used this chemical.

<span class="mw-page-title-main">Tabernanthine</span> Chemical compound

Tabernanthine is an alkaloid found in Tabernanthe iboga.

<span class="mw-page-title-main">2-Methoxyethyl-18-methoxycoronaridinate</span> Chemical compound

(−)-2-Methoxyethyl-18-methoxycoronaridinate (ME-18-MC) is a second generation synthetic derivative of ibogaine developed by the research team led by the pharmacologist Stanley D. Glick from the Albany Medical College and the chemist Martin E. Kuehne from the University of Vermont. In animal studies it has shown similar efficacy to the related compound 18-methoxycoronaridine (18-MC) at reducing self-administration of morphine and methamphetamine but with higher potency by weight, showing anti-addictive effects at the equivalent of half the minimum effective dose of 18-MC. Similarly to 18-MC itself, ME-18-MC acts primarily as a selective α3β4 nicotinic acetylcholine antagonist, although it has a slightly stronger effect than 18-MC as an NMDA antagonist, and its effects on opioid receptors are weaker than those of 18-MC at all except the kappa opioid receptor, at which it has slightly higher affinity than 18-MC.

<span class="mw-page-title-main">18-Methylaminocoronaridine</span> Chemical compound

(−)-18-Methylaminocoronaridine (18-MAC) is a second generation synthetic derivative of ibogaine developed by the research team led by the pharmacologist Stanley D. Glick from the Albany Medical College and the chemist Martin E. Kuehne from the University of Vermont.

<span class="mw-page-title-main">Catharanthine</span> Chemical compound

Catharanthine is a terpene indole alkaloid produced by the medicinal plant Catharanthus roseus and Tabernaemontana divaricata. Catharanthine is derived from strictosidine, but the exact mechanism by which this happens is currently unknown. Catharanthine is one of the two precursors that form vinblastine, the other being vindoline.

Iboga-type alkaloids are a set of monoterpene indole alkaloids comprising naturally occurring compounds found in Tabernanthe and Tabernaemontana, as well as synthetic structural analogs. Naturally occurring iboga-type alkaloids include ibogamine, ibogaine, tabernanthine, and other substituted ibogamines (see below). Many iboga-type alkaloids display biological activities such as cardiac toxicity and psychoactive effects, and some have been studied as potential treatments for drug addiction.

<span class="mw-page-title-main">Ibogaline</span> Alkaloid found in Tabernanthe iboga

Ibogaline is an alkaloid found in Tabernanthe iboga along with the related chemical compounds ibogaine, ibogamine, and other minor alkaloids. It is a relatively smaller component of Tabernanthe iboga root bark total alkaloids (TA) content. It is also present in Tabernaemontana species such as Tabernaemontana australis which shares similar ibogan-biosynthetic pathways. The percentage of ibogaline in T. iboga root bark is up to 15% TA with ibogaine constituting 80% of the alkaloids and ibogamine up to 5%.

References

  1. Glick SD, Kuehne ME, Maisonneuve IM, Bandarage UK, Molinari HH (May 1996). "18-Methoxycoronaridine, a non-toxic iboga alkaloid congener: effects on morphine and cocaine self-administration and on mesolimbic dopamine release in rats". Brain Research. 719 (1–2): 29–35. doi:10.1016/0006-8993(96)00056-X. PMID   8782860. S2CID   6178161.
  2. Glick SD, Sell EM, Maisonneuve IM (December 2008). "Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on methamphetamine and sucrose self-administration". European Journal of Pharmacology. 599 (1–3): 91–5. doi:10.1016/j.ejphar.2008.09.038. PMC   2600595 . PMID   18930043.
  3. Taraschenko OD, Rubbinaccio HY, Maisonneuve IM, Glick SD (December 2008). "18-methoxycoronaridine: a potential new treatment for obesity in rats?". Psychopharmacology. 201 (3): 339–50. doi:10.1007/s00213-008-1290-9. PMC   3787601 . PMID   18751969.
  4. Mindmed Acquires Opioid Addiction Drug Candidate Based on the Natural Psychedelic Ibogaine newswire.ca September 16, 2019.
  5. 1 2 Albany Med scientist closer to addiction drug success timesunion.com June 27, 2014.
  6. Addiction Treatment Strives for Legitimacy. Journal of the American Medical Association. 2002; 288: 3096-3101.
  7. "Phase 2 Trial to Evaluate 18-Methoxycoronaridine Efficacy, Safety and Tolerability in Cutaneous Leishmaniasis Patients". ClinicalTrials.gov. Retrieved 19 February 2020.
  8. "Opioid Use Disorder: Zolunicant's Potential for Unmet Treatment Needs". MindMed.co. 20 May 2022. Retrieved 23 May 2022.
  9. Maisonneuve IM, Glick SD (June 2003). "Anti-addictive actions of an iboga alkaloid congener: a novel mechanism for a novel treatment". Pharmacology, Biochemistry, and Behavior. 75 (3): 607–18. doi:10.1016/S0091-3057(03)00119-9. PMID   12895678. S2CID   26758480.
  10. Antonio T, Childers SR, Rothman RB, Dersch CM, King C, Kuehne M, et al. (2013). "Effect of Iboga alkaloids on μ-opioid receptor-coupled G protein activation". PLOS ONE. 8 (10): e77262. Bibcode:2013PLoSO...877262A. doi: 10.1371/journal.pone.0077262 . PMC   3818563 . PMID   24204784.
  11. Glick SD, Maisonneuve IM, Hough LB, Kuehne ME, Bandarage UK. (±)-18-Methoxycoronaridine: A Novel Iboga Alkaloid Congener Having Potential Anti-Addictive Efficacy. CNS Drug Reviews 1999;5(1):27-42.
  12. Glick SD, Ramirez RL, Livi JM, Maisonneuve IM (May 2006). "18-Methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self-administration in rats". European Journal of Pharmacology. 537 (1–3): 94–8. doi:10.1016/j.ejphar.2006.03.045. PMID   16626688.
  13. Taraschenko OD, Shulan JM, Maisonneuve IM, Glick SD (July 2007). "18-MC acts in the medial habenula and interpeduncular nucleus to attenuate dopamine sensitization to morphine in the nucleus accumbens". Synapse. 61 (7): 547–60. doi:10.1002/syn.20396. PMID   17447255. S2CID   2252348.
  14. Taraschenko OD, Rubbinaccio HY, Shulan JM, Glick SD, Maisonneuve IM (July 2007). "Morphine-induced changes in acetylcholine release in the interpeduncular nucleus and relationship to changes in motor behavior in rats". Neuropharmacology. 53 (1): 18–26. doi:10.1016/j.neuropharm.2007.04.010. PMC   2025684 . PMID   17544456.
  15. Glick SD, Sell EM, Maisonneuve IM (December 2008). "Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on methamphetamine and sucrose self-administration". European Journal of Pharmacology. 599 (1–3): 91–5. doi:10.1016/j.ejphar.2008.09.038. PMC   2600595 . PMID   18930043.
  16. Arias HR, Tae HS, Micheli L, Yousuf A, Ghelardini C, Adams DJ, Di Cesare Mannelli L (September 2020). "Coronaridine congeners decrease neuropathic pain in mice and inhibit α9α10 nicotinic acetylcholine receptors and CaV2.2 channels". Neuropharmacology . 175: 108194. doi:10.1016/j.neuropharm.2020.108194. hdl: 2158/1213504 . PMID   32540451. S2CID   219705597.
  17. Kuehne ME, He L, Jokiel PA, Pace CJ, Fleck MW, Maisonneuve IM, et al. (June 2003). "Synthesis and biological evaluation of 18-methoxycoronaridine congeners. Potential antiaddiction agents". Journal of Medicinal Chemistry. 46 (13): 2716–30. doi:10.1021/jm020562o. PMID   12801235.
  18. Pace CJ, Glick SD, Maisonneuve IM, He LW, Jokiel PA, Kuehne ME, Fleck MW (May 2004). "Novel iboga alkaloid congeners block nicotinic receptors and reduce drug self-administration". European Journal of Pharmacology. 492 (2–3): 159–67. doi:10.1016/j.ejphar.2004.03.062. PMID   15178360.