Mitragynine pseudoindoxyl

Last updated

Mitragynine pseudoindoxyl
Mitragynine-pseudoindoxyl.svg
Mitragynine pseudoindoxyl.png
Clinical data
Other namesSpiro(2H-indole-2,1'(5'H)-indolizine)-7'-acetic acid, 6'-ethyl-1,2',3,3',6',7',8',8'a-octahydro-4-methoxy-alpha-(methoxymethylene)-3-oxo-, methyl ester, (alphaE,1'S,6'S,7'S,8'as)-
Identifiers
  • methyl (2E)-2-[(1′S,6′S,7′S,8′aS)-6′-ethyl-4-methoxy-3-oxo-1,2′,3,3′,6′,7′,8′,8′a-octahydro-5′H-spiro[indole-2,1′-indolizin]-7′-yl]-3-methoxyprop-2-enoate
CAS Number
PubChem CID
ChemSpider
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C23H30N2O5
Molar mass 414.502 g·mol−1
3D model (JSmol)
  • CC[C@H](C1)[C@](/C(C(OC)=O)=C\OC)([H])C[C@@](N1CC2)([H])[C@]32NC4=CC=CC(OC)=C4C3=O
  • InChI=1S/C23H30N2O5/c1-5-14-12-25-10-9-23(19(25)11-15(14)16(13-28-2)22(27)30-4)21(26)20-17(24-23)7-6-8-18(20)29-3/h6-8,13-15,19,24H,5,9-12H2,1-4H3/b16-13+/t14-,15+,19+,23+/m1/s1
  • Key:BAEJBRCYKACTAA-WGUOAFTMSA-N

Mitragynine pseudoindoxyl is a rearrangement product of 7-hydroxymitragynine an active metabolite of mitragynine. [1]

Contents

Mitragynine pseudoindoxyl can be produced in the blood as a metabolite of 7-hydroxymitragynine. [2]

Dependence and withdrawal

Pharmacology

Mitragynine pseudoindoxyl is a μ opioid receptor agonist and δ opioid receptor antagonist and acts as a G protein biased agonist at μ opioid receptors and possesses a favourable side effect profile compared to conventional opioids. [3] Cryo-EM structures of μOR-Gi1 complex with mitragynine pseudoindoxyl and lofentanil (one of the most potent opioids) revealed that the two ligands engage distinct subpockets, and molecular dynamics simulations showed additional differences in the binding site that promote distinct active-state conformations on the intracellular side of the receptor where G proteins and β-arrestins bind. [4] Importantly, studies have shown that oxidative metabolism is capable of transforming mitragynine (the main alkaloid in kratom) into mitragynine pseudoindoxyl in two steps, which is likely to influence kratom's complex pharmacological effects. [5] [6] [7]

Chemistry

Mitragynine pseudoindoxyl was first accessible via biomimetic semisynthesis from mitragynine. [8] [9] [3] Total synthesis of an unnatural analogue was reported featuring an interrupted Ugi reaction as the key step. [10] Scalable and modular total synthesis of the natural product has been also accomplished using a chiral pool based strategy. [11] [12] This study also demonstrated structural plasticity in biological systems.

See also

Related Research Articles

<i>Mitragyna speciosa</i> Plant species, recreational drug (kratom)

Mitragyna speciosa is a tropical evergreen tree of the Rubiaceae family native to Southeast Asia. It is indigenous to Cambodia, Thailand, Indonesia, Malaysia, Myanmar, and Papua New Guinea, where its leaves, known as "kratom" have been used in herbal medicine since at least the 19th century. They have also historically been consumed via chewing, smoking, and as a tea. Kratom has opioid-like properties and some stimulant-like effects. As of 2018, the efficacy and safety of kratom are unclear. In 2019, the United States Food and Drug Administration (FDA) stated that there is no evidence that kratom is safe or effective for treating any condition. Some people take it for managing chronic pain, for treating opioid withdrawal symptoms, or for recreational purposes. The onset of effects typically begins within five to ten minutes and lasts for two to five hours.

δ-opioid receptor Opioid receptor

The δ-opioid receptor, also known as delta opioid receptor or simply delta receptor, abbreviated DOR or DOP, is an inhibitory 7-transmembrane G-protein coupled receptor coupled to the G protein Gi/G0 and has enkephalins as its endogenous ligands. The regions of the brain where the δ-opioid receptor is largely expressed vary from species model to species model. In humans, the δ-opioid receptor is most heavily expressed in the basal ganglia and neocortical regions of the brain.

<span class="mw-page-title-main">Desmetramadol</span> Opioid painkiller medication

Desmetramadol, also known as O-desmethyltramadol (O-DSMT), is an opioid analgesic and the main active metabolite of tramadol. Tramadol is demethylated by the liver enzyme CYP2D6 to desmetramadol in the same way as codeine, and so similarly to the variation in effects seen with codeine, individuals who have a less active form of CYP2D6 will tend to have reduced analgesic effects from tramadol. Because desmetramadol itself does not need to be metabolized to induce an analgesic effect, it can be used in individuals with low CYP2D6 activity unlike tramadol.

<span class="mw-page-title-main">7-Hydroxymitragynine</span> Opioid analgesic compound

7-Hydroxymitragynine (7-OH) is a terpenoid indole alkaloid from the plant Mitragyna speciosa, commonly known as kratom. It was first described in 1994 and is a natural product derived from the mitragynine present in the kratom leaf. 7-OH binds to opioid receptors like mitragynine, but research suggests that 7-OH binds with greater efficacy.

<span class="mw-page-title-main">Herkinorin</span> Opioid analgesic compound

Herkinorin is an opioid analgesic that is an analogue of the natural product salvinorin A. It was discovered in 2005 during structure-activity relationship studies into neoclerodane diterpenes, the family of chemical compounds of which salvinorin A is a member.

<span class="mw-page-title-main">SNC-80</span> Opioid analgesic drug

SNC-80 is an opioid analgesic compound that selectively activates μ–δ opioid receptor heteromers and is used primarily in scientific research. Discovered in 1994, SNC-80 was a pioneering non-peptide compound regarded as a highly selective agonist for the δ-opioid receptor.

<span class="mw-page-title-main">Aeruginascin</span> Chemical compound

Aeruginascin, also known as 4-phosphoryloxy-N,N,N-trimethyltryptamine (4-PO-TMT), is an indoleamine derivative which occurs naturally within the mushrooms Inocybe aeruginascens, Pholiotina cyanopus, and Psilocybe cubensis.

<span class="mw-page-title-main">Rhynchophylline</span> Chemical compound

Rhynchophylline is an alkaloid found in certain Uncaria species (Rubiaceae), notably Uncaria rhynchophylla and Uncaria tomentosa. It also occurs in the leaves of Mitragyna speciosa (kratom) and Mitragyna tubulosa, a tree native to Thailand. Chemically, it is related to the alkaloid mitragynine.

<span class="mw-page-title-main">Opioidergic</span>

An opioidergic agent is a chemical which functions to directly modulate the opioid neuropeptide systems in the body or brain. Examples include opioid analgesics such as morphine and opioid antagonists such as naloxone. Opioidergics also comprise allosteric modulators and enzyme affecting agents like enkephalinase inhibitors.

<span class="mw-page-title-main">MT-45</span> Chemical compound

MT-45 (IC-6) is an opioid analgesic drug invented in the 1970s by Dainippon Pharmaceutical Co. It is chemically a 1-substituted-4-(1,2-diphenylethyl) piperazine derivative, which is structurally unrelated to most other opioid drugs. Racemic MT-45 has around 80% the potency of morphine, with almost all opioid activity residing in the (S) enantiomer. It has been used as a lead compound from which a large family of potent opioid drugs have been developed, including full agonists, partial agonists, and antagonists at the three main opioid receptor subtypes. Fluorinated derivatives of MT-45 such as 2F-MT-45 are significantly more potent as μ-opioid receptor agonists, and one of its main metabolites 1,2-diphenylethylpiperazine also blocks NMDA receptors.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">IBNtxA</span> Chemical compound

IBNtxA, or 3-iodobenzoyl naltrexamine, is an atypical opioid analgesic drug derived from naltrexone. In animal studies it produces potent analgesic effects that are blocked by levallorphan and so appear to be μ-opioid mediated, but it fails to produce constipation or respiratory depression, and is neither rewarding or aversive in conditioned place preference protocols. These unusual properties are thought to result from agonist action at a splice variant or heterodimer of the μ-opioid receptor, rather than at the classical full length form targeted by conventional opioid drugs.

<span class="mw-page-title-main">Cebranopadol</span> Opioid analgesic drug

Cebranopadol is an opioid analgesic of the benzenoid class which is currently under development internationally by Grünenthal, a German pharmaceutical company, and its partner Depomed, a pharmaceutical company in the United States, for the treatment of a variety of different acute and chronic pain states. As of November 2014, it is in phase III clinical trials.

Iboga-type alkaloids are a set of monoterpene indole alkaloids comprising naturally occurring compounds found in Tabernanthe and Tabernaemontana, as well as synthetic structural analogs. Naturally occurring iboga-type alkaloids include ibogamine, ibogaine, tabernanthine, and other substituted ibogamines. Many iboga-type alkaloids display biological activities such as cardiac toxicity and psychoactive effects, and some have been studied as potential treatments for drug addiction.

<span class="mw-page-title-main">Mitragynine</span> Opioid analgesic compound

Mitragynine is an indole-based alkaloid and the most abundant active alkaloid in the Southeast Asian plant Mitragyna speciosa, commonly known as kratom. The total alkaloid concentration in dried leaves ranges from 0.5 to 1.5%. In Thai varieties, mitragynine is the most abundant component while 7-hydroxymitragynine is a minor constituent. In Malaysian kratom varieties, mitragynine is present at lower concentration. Such preparations are orally consumed and typically involve dried kratom leaves which are brewed into tea or ground and placed into capsules. Mitragynine consumption for medicinal and recreation purposes dates back centuries, although early use was primarily limited to Southeast Asian countries such as Indonesia and Thailand where the plant grows indigenously. Recently, mitragynine use has spread throughout Europe and the Americas as both a recreational and medicinal drug. While research into the effects of kratom have begun to emerge, investigations on the active compound mitragynine are less common.

<span class="mw-page-title-main">HS665</span> Chemical compound

HS665 is a drug which acts as a potent and selective κ-opioid receptor agonist, and has analgesic effects in animal studies. HS665 is not an agonist for the mu receptor, leading to less potential for abuse.

<span class="mw-page-title-main">Speciociliatine</span> Chemical compound

Speciociliatine is a major alkaloid of the plant Mitragyna speciosa, commonly known as kratom. It is a stereoisomer of Mitragynine and constitutes 0.00156 - 2.9% of the dried leaf material.

<span class="mw-page-title-main">Collybolide</span> Chemical compound

Collybolide is a secondary metabolite of the Rhodocollybia maculata mushroom, a basidiomycete fungus that grows on rotting conifer wood. It was previously believed to be a potent and selective kappa-opioid receptor agonist. However, a total synthesis and independent biological assay determined that collybolide neither excites nor suppresses kappa-opioid receptor signaling. Collybolide is unlikely to be psychoactive, although it has been shown to inhibit L-type calcium channels in isolated rat aorta.

<span class="mw-page-title-main">BMS‐986122</span> Chemical compound

BMS‐986122 is a selective positive allosteric modulator (PAM) of the μ-opioid receptor (MOR).

<span class="mw-page-title-main">MS1 (drug)</span> Experimental drug

MS1 is a positive allosteric modulator (PAM) of the μ-opioid receptor (MOR). It was developed from structural modification of the earlier MOR PAM BMS‐986122.

References

  1. Jansen KL, Prast CJ (1988). "Ethnopharmacology of kratom and the Mitragyna alkaloids". Journal of Ethnopharmacology. 23 (1): 115–119. doi:10.1016/0378-8741(88)90121-3. PMID   3419199.
  2. Kamble SH, León F, King TI, Berthold EC, Lopera-Londoño C, Siva Rama Raju K, et al. (December 2020). "Metabolism of a Kratom Alkaloid Metabolite in Human Plasma Increases Its Opioid Potency and Efficacy". ACS Pharmacology & Translational Science. 3 (6): 1063–1068. doi:10.1021/acsptsci.0c00075. PMC   7737207 . PMID   33344889.
  3. 1 2 Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, et al. (September 2016). "Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2". Journal of Medicinal Chemistry. 59 (18): 8381–8397. doi:10.1021/acs.jmedchem.6b00748. PMC   5344672 . PMID   27556704.
  4. Qu Q, Huang W, Aydin D, Paggi JM, Seven AB, Wang H, et al. (April 2023). "Insights into distinct signaling profiles of the µOR activated by diverse agonists". Nature Chemical Biology. 19 (4): 423–430. doi:10.1038/s41589-022-01208-y. PMC   11098091 . PMID   36411392. S2CID   245021836.
  5. Spetea M, Schmidhammer H (June 2019). "Unveiling 7-Hydroxymitragynine as the Key Active Metabolite of Mitragynine and the Promise for Creating Novel Pain Relievers". ACS Central Science. 5 (6): 936–938. doi:10.1021/acscentsci.9b00462. PMC   6598155 . PMID   31263752.
  6. Kamble SH, León F, King TI, Berthold EC, Lopera-Londoño C, Siva Rama Raju K, et al. (December 2020). "Metabolism of a Kratom Alkaloid Metabolite in Human Plasma Increases Its Opioid Potency and Efficacy". ACS Pharmacology & Translational Science. 3 (6): 1063–1068. doi:10.1021/acsptsci.0c00075. PMC   7737207 . PMID   33344889.
  7. Chakraborty S, Uprety R, Slocum ST, Irie T, Le Rouzic V, Li X, et al. (November 2021). "Oxidative Metabolism as a Modulator of Kratom's Biological Actions". Journal of Medicinal Chemistry. 64 (22): 16553–16572. doi:10.1021/acs.jmedchem.1c01111. PMC   8673317 . PMID   34783240.
  8. Takayama H, Ishikawa H, Kurihara M, Kitajima M, Aimi N, Ponglux D, et al. (April 2002). "Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: discovery of opioid agonists structurally different from other opioid ligands". Journal of Medicinal Chemistry. 45 (9): 1949–1956. doi:10.1021/jm010576e. PMID   11960505.
  9. Yamamoto LT, Horie S, Takayama H, Aimi N, Sakai S, Yano S, et al. (July 1999). "Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa". General Pharmacology. 33 (1): 73–81. doi:10.1016/S0306-3623(98)00265-1. PMID   10428019.
  10. Kim J, Schneekloth JS, Sorensen EJ (September 2012). "A chemical synthesis of 11-methoxy mitragynine pseudoindoxyl featuring the interrupted Ugi reaction". Chemical Science. 3 (9): 2849–2852. doi:10.1039/C2SC20669B. PMC   3714104 . PMID   23878716.
  11. Angyal P, Hegedüs K, Mészáros BB, Daru J, Dudás Á, Galambos AR, et al. (2023-02-02). "Syntheses and structural plasticity of kratom pseudoindoxyl metabolites". ChemRxiv. doi:10.26434/chemrxiv-2023-62vzz-v2.
  12. Angyal P, Hegedüs K, Mészáros BB, Daru J, Dudás Á, Galambos AR, et al. (June 2023). "Total Synthesis and Structural Plasticity of Kratom Pseudoindoxyl Metabolites". Angewandte Chemie. 62 (35): e202303700. doi: 10.1002/anie.202303700 . PMID   37332089.