Ciprefadol

Last updated • a couple of secsFrom Wikipedia, The Free Encyclopedia
Ciprefadol
Ciprefadol Structure.svg
Clinical data
ATC code
  • none
Identifiers
  • 3-[(4aR,8aR)-2-(cyclopropylmethyl)-1,3,4,5,6,7,8,8a-octahydroisoquinolin-4a-yl]phenol
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C19H27NO
Molar mass 285.431 g·mol−1
3D model (JSmol)
  • C1CC[C@]2(CCN(C[C@@H]2C1)CC3CC3)C4=CC(=CC=C4)O
  • InChI=1S/C19H27NO/c21-18-6-3-5-16(12-18)19-9-2-1-4-17(19)14-20(11-10-19)13-15-7-8-15/h3,5-6,12,15,17,21H,1-2,4,7-11,13-14H2/t17-,19-/m0/s1
  • Key:KFIQKMINEHFZSM-HKUYNNGSSA-N

Ciprefadol is an opioid analgesic that is an isoquinoline derivative most closely related to cyclazocine and picenadol, [1] with a number of other related compounds known. [2] [3] [4] [5] Ciprefadol is a mixed agonist–antagonist at μ-opioid receptors and can partly block the effects of morphine at low doses, though at higher doses it acts more like a full agonist. It is also a potent κ-opioid agonist, unlike the corresponding N-methyl and N-phenethyl derivatives which are reasonably μ-selective agonists. [6]

Related Research Articles

<span class="mw-page-title-main">Ohmefentanyl</span> Opioid analgesic

Ohmefentanyl is an extremely potent opioid analgesic drug which selectively binds to the μ-opioid receptor.

<span class="mw-page-title-main">7-Hydroxymitragynine</span> Opioid analgesic compound

7-Hydroxymitragynine (7-OH) is a terpenoid indole alkaloid from the plant Mitragyna speciosa, commonly known as kratom. It was first described in 1994 and is a natural product derived from mitragynine present in the kratom leaf. 7-OH binds to opioid receptors like mitragynine, but research suggests that 7-OH binds with greater efficacy.

<span class="mw-page-title-main">Dezocine</span> Opioid analgesic

Dezocine, sold under the brand name Dalgan, is an atypical opioid analgesic which is used in the treatment of pain. It is used by intravenous infusion and intramuscular injection.

<span class="mw-page-title-main">Herkinorin</span> Opioid analgesic compound

Herkinorin is an opioid analgesic that is an analogue of the natural product salvinorin A. It was discovered in 2005 during structure-activity relationship studies into neoclerodane diterpenes, the family of chemical compounds of which salvinorin A is a member.

<span class="mw-page-title-main">Propiram</span> Opioid analgesic drug

Propiram is a partial μ-opioid receptor agonist and weak μ antagonist analgesic from the ampromide family of drugs related to other drugs such as phenampromide and diampromide. It was invented in 1963 in the United Kingdom by Bayer but was not widely marketed, although it saw some limited clinical use, especially in dentistry. Propiram reached Phase III clinical trials in the United States and Canada.

<span class="mw-page-title-main">SNC-80</span> Opioid analgesic drug

SNC-80 is an opioid analgesic compound that selectively activates μ–δ opioid receptor heteromers and is used primarily in scientific research. Discovered in 1994, SNC-80 was a pioneering non-peptide compound regarded as a highly selective agonist for the δ-opioid receptor.

<span class="mw-page-title-main">JTC-801</span> Chemical compound

JTC-801 is an opioid analgesic drug used in scientific research.

<span class="mw-page-title-main">14-Phenylpropoxymetopon</span> Chemical compound

14-Phenylpropoxymetopon (PPOM) is an opioid analogue that is a derivative of metopon which has been substituted with a γ-phenylpropoxy group at the 14-position. PPOM is a highly potent analgesic drug several thousand times stronger than morphine, with an even higher in vivo potency than etorphine. The 14-phenylpropoxy substitution appears to confer potent μ-opioid agonist activity, even when combined with substitutions such as N-cyclopropyl or N-allyl, which normally result in μ-opioid antagonist compounds.

<i>N</i>-Phenethyl-14-ethoxymetopon Opioid analgesic drug

N-Phenethyl-14-ethoxymetopon is a drug that is a derivative of metopon. It is a potent analgesic, around 60 times stronger than morphine and produces significantly less constipation.

<span class="mw-page-title-main">Azaprocin</span> Opioid analgesic drug

Azaprocin is a drug which is an opioid analgesic with approximately ten times the potency of morphine, and a fast onset and short duration of action. It was discovered in 1963, but has never been marketed.

<span class="mw-page-title-main">Agonist-antagonist</span> Type of drug

In pharmacology the term agonist-antagonist or mixed agonist/antagonist is used to refer to a drug which under some conditions behaves as an agonist while under other conditions, behaves as an antagonist.

<span class="mw-page-title-main">JDTic</span> Chemical compound

JDTic is a selective, long-acting ("inactivating") antagonist of the κ-opioid receptor (KOR). JDTic is a 4-phenylpiperidine derivative, distantly related structurally to analgesics such as pethidine and ketobemidone, and more closely to the MOR antagonist alvimopan. In addition, it is structurally distinct from other KOR antagonists such as norbinaltorphimine. JDTic has been used to create crystal structures of KOR [ PDB: 4DJH, 6VI4​].

<span class="mw-page-title-main">Arylcyclohexylamine</span> Class of chemical compounds

Arylcyclohexylamines, also known as arylcyclohexamines or arylcyclohexanamines, are a chemical class of pharmaceutical, designer, and experimental drugs.

<i>N</i>-Phenethylnormorphine Chemical compound

N-Phenethylnormorphine is an opioid analgesic drug derived from morphine by replacing the N-methyl group with β-phenethyl. It is around eight to fourteen times more potent than morphine as a result of this modification, in contrast to most other N-substituted derivatives of morphine, which are substantially less active, or act as antagonists. Binding studies have helped to explain the increased potency of N-phenethylnormorphine, showing that the phenethyl group extends out to reach an additional binding point deeper inside the μ-opioid receptor cleft, analogous to the binding of the phenethyl group on fentanyl.

<span class="mw-page-title-main">MT-45</span> Chemical compound

MT-45 (IC-6) is an opioid analgesic drug invented in the 1970s by Dainippon Pharmaceutical Co. It is chemically a 1-substituted-4-(1,2-diphenylethyl) piperazine derivative, which is structurally unrelated to most other opioid drugs. Racemic MT-45 has around 80% the potency of morphine, with almost all opioid activity residing in the (S) enantiomer. It has been used as a lead compound from which a large family of potent opioid drugs have been developed, including full agonists, partial agonists, and antagonists at the three main opioid receptor subtypes. Fluorinated derivatives of MT-45 such as 2F-MT-45 are significantly more potent as μ-opioid receptor agonists, and one of its main metabolites 1,2-diphenylethylpiperazine also blocks NMDA receptors.

<span class="mw-page-title-main">Ketorfanol</span> Chemical compound

Ketorfanol, or ketorphanol, is an opioid analgesic of the morphinan family that was found to possess "potent antiwrithing activity" in animal assays but was never marketed. It is a 17-cycloalkylmethyl derivative of morphinan and as such, is closely related structurally to butorphanol, cyclorphan, oxilorphan, proxorphan, and xorphanol, which act preferentially as κ-opioid receptor agonists and to a lesser extent as μ-opioid receptor partial agonists/antagonists.

<span class="mw-page-title-main">Mitragynine pseudoindoxyl</span> Opioid analgesic compound

Mitragynine pseudoindoxyl is a rearrangement product of 7-hydroxymitragynine, an active metabolite of mitragynine.

<span class="mw-page-title-main">U-77891</span> Chemical compound

U-77891 is an opioid analgesic drug that was first synthesized in 1983 by the Upjohn company. It was originally synthesized to prove that the removal of a single methylene spacer of the benzamide would alter a κ-opioid receptor agonist such as U-50488 into an μ-opioid receptor agonist, as well as producing a semi-rigid derivative of U-47700. This would help elucidate the relative positions of the hydrogen-bond acceptors and substituted aromatic system to find the compound with the lowest Ki value in a series of benzamide opioids dating back to the 1970s. The original work found a mixture of agonists and antagonists.

Peripherally acting μ-opioid receptor antagonists (PAMORAs) are a class of chemical compounds that are used to reverse adverse effects caused by opioids interacting with receptors outside the central nervous system (CNS), mainly those located in the gastrointestinal tract. PAMORAs are designed to specifically inhibit certain opioid receptors in the gastrointestinal tract and with limited ability to cross the blood–brain barrier. Therefore, PAMORAs do not affect the analgesic effects of opioids within the central nervous system.

References

  1. Dennis M. Zimmerman et al. N-cycloalkylmethyl decahydroisoquinolines. US Patent 4001248, Jun 7, 1974
  2. David R. Brittelli et al. 4a-Aryl-trans-decahydroisoquinolines. US Patent 4419517, Apr 8, 1975
  3. Henry Rapoport et al. Synthesis of 4A-aryl-decahydroisoquinolines. US Patent 4189583, Apr 26, 1978
  4. Judd DB, Brown DS, Lloyd JE, McElroy AB, Scopes DI, Birch PJ, et al. (January 1992). "Synthesis, antinociceptive activity, and opioid receptor profiles of substituted trans-3-(decahydro- and octahydro-4a-isoquinolinyl)phenols". Journal of Medicinal Chemistry. 35 (1): 48–56. doi:10.1021/jm00079a005. PMID   1310115.
  5. Carroll FI, Chaudhari S, Thomas JB, Mascarella SW, Gigstad KM, Deschamps J, Navarro HA (December 2005). "N-substituted cis-4a-(3-hydroxyphenyl)-8a-methyloctahydroisoquinolines are opioid receptor pure antagonists". Journal of Medicinal Chemistry. 48 (26): 8182–93. doi:10.1021/jm058261c. PMC   2585695 . PMID   16366600.
  6. Zimmerman DM, Cantrell BE, Swartzendruber JK, Jones ND, Mendelsohn LG, Leander JD, Nickander RC (March 1988). "Synthesis and analgesic properties of N-substituted trans-4a-aryldecahydroisoquinolines". Journal of Medicinal Chemistry. 31 (3): 555–60. doi:10.1021/jm00398a011. PMID   2831363.