Clinical data | |
---|---|
Other names | Morphine dinicotinate, 3,6-dinicotinoylmorphine |
AHFS/Drugs.com | International Drug Names |
Routes of administration | Oral, Intravenous, Rectal |
ATC code | |
Legal status | |
Legal status |
|
Identifiers | |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
KEGG | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.010.326 |
Chemical and physical data | |
Formula | C29H25N3O5 |
Molar mass | 495.535 g·mol−1 |
3D model (JSmol) | |
| |
| |
(what is this?) (verify) |
Nicomorphine (Vilan, Subellan, Gevilan, MorZet) is the 3,6-dinicotinate ester of morphine. It is a strong opioid agonist analgesic two to three times as potent as morphine with a side effect profile similar to that of dihydromorphine, morphine, and diamorphine.
Nicomorphine was first synthesized in 1904 and was patented as Vilan by Lannacher Heilmittel G.m.b.H. of Austria in 1957.
The hydrochloride salt is available as ampoules of 10 mg/ml solution for injection, 5 mg tablets, and 10 mg suppositories. It is possible that other manufacturers distribute 10 mg tablets and other concentrations of injectable nicomorphine in ampoules and multidose vials. It is used, particularly in the German-speaking countries and elsewhere in Central Europe and some other countries in Europe and the former USSR in particular, for post-operative, cancer, chronic non-malignant and other neuropathic pain.[ medical citation needed ] It is commonly used in patient-controlled analgesia (PCA) units. The usual starting dose is 5–10 mg given every 3–5 hours.
Nicomorphine's side effects are similar to those of other opioids and include itching, nausea and respiratory depression. It is considered by doctors to be one of the better analgesics for the comprehensive mitigation of suffering, as opposed to purely clouding the noxious pain stimulus, in the alleviation of chronic pain conditions. [2]
The method for synthesis of nicomorphine, which involves treating anhydrous morphine base with nicotinic anhydride at 130 °C, was published by Pongratz and Zirm in Monatshefte für Chemie in 1957, [3] simultaneously with the two analogues nicocodeine and nicodicodeine in an article about amides and esters of various organic acids. [3] [4]
Nicomorphine is regulated in much the same fashion as morphine worldwide but is a Schedule I controlled substance in the United States and was never introduced there.
Nicomorphine may appear on rare occasions on the European black market and other channels for unsupervised opioid users. It can be produced as part of a mixture of salts and derivatives of morphine by end users by means of treating morphine with nicotinic anhydride or related chemicals in an analogue of the heroin homebake process.
CAS number of hydrochloride: 35055-78-8
US DEA ACSCN: 9312
Free base conversion ratios of salts:
Nicomorphine Hydrochloride: 0.93
The 3,6-diesters of morphine are drugs with more rapid and complete central nervous system penetration due to increased lipid solubility and other structural considerations. The prototype for this subgroup of semi-synthetic opiates is heroin and the group also includes dipropanoylmorphine, diacetyldihydromorphine, disalicylmorphine and others. Whilst this produces an enhanced "bang"[ clarification needed ] when the drug is administered intravenously, it cannot be distinguished from morphine via other routes, although the different side effect profile, including lower incidence of nausea, is very apparent.
Nicomorphine is rapidly metabolized when administered by the I.V. route, having a half-life of 3 minutes, into morphine and 6-nicotinoylmorphine, the secondary active metabolite. Half lives of the metabolites were 3–15 minutes for the nicotinoyl metabolite, and 135–190 minutes for morphine. [5]
Via the epidural route, a much slower release from epidural space occurs and nicomorphine remains detectable for 1.5 hours or so, and has a longer effect of 18.2 +/- 10.1 hours due to slower release of the active metabolites, morphine and 6-nicotinoylmorphine. Half lives for those compounds is listed in the IV route. [6]
Pharmacokinetics via the rectal route differ, and change metabolism. Eight minutes after administration, morphine appeared rapidly, and had a half life of 1.48 +/- 0.48h. This was in turn metabolized to morphine-3- and morphine-6-glucoranides after another 12 minutes, which had similar half-lives to one-another, at about 2.8h. No 6-mononicotinoylmorphine was found, and bioavailability of morphine and metabolic actives was 88%. No remaining nicomorphine was found in urine. [7]
Methadone, sold under the brand names Dolophine and Methadose among others, is a synthetic opioid used medically to treat chronic pain and opioid use disorder. Prescribed for daily use, the medicine relieves cravings and opioid withdrawal symptoms. Withdrawal management using methadone can be accomplished in less than a month, or it may be done gradually over a longer period of time, or simply maintained for the rest of the patient's life. While a single dose has a rapid effect, maximum effect can take up to five days of use. After long-term use, in people with normal liver function, effects last 8 to 36 hours. Methadone is usually taken by mouth and rarely by injection into a muscle or vein.
Tramadol, sold under the brand name Ultram among others, is an opioid pain medication and a serotonin–norepinephrine reuptake inhibitor (SNRI) used to treat moderately severe pain. When taken by mouth in an immediate-release formulation, the onset of pain relief usually begins within an hour. It is also available by injection. It is available in combination with paracetamol (acetaminophen).
Hydromorphone, also known as dihydromorphinone, and sold under the brand name Dilaudid among others, is a morphinan opioid used to treat moderate to severe pain. Typically, long-term use is only recommended for pain due to cancer. It may be used by mouth or by injection into a vein, muscle, or under the skin. Effects generally begin within half an hour and last for up to five hours. A 2016 Cochrane review found little difference in benefit between hydromorphone and other opioids for cancer pain.
Pethidine, also known as meperidine and sold under the brand name Demerol among others, is a fully synthetic opioid pain medication of the phenylpiperidine class. Synthesized in 1938 as a potential anticholinergic agent by the German chemist Otto Eisleb, its analgesic properties were first recognized by Otto Schaumann while working for IG Farben, in Germany. Pethidine is the prototype of a large family of analgesics including the pethidine 4-phenylpiperidines, the prodines, bemidones, and others more distant, including diphenoxylate and analogues.
Oxymorphone is a highly potent opioid analgesic indicated for treatment of severe pain. Pain relief after injection begins after about 5–10 minutes, after oral administration it begins after about 30 minutes, and lasts about 3–4 hours for immediate-release tablets and 12 hours for extended-release tablets. The elimination half-life of oxymorphone is much faster intravenously, and as such, the drug is most commonly used orally. Like oxycodone, which metabolizes to oxymorphone, oxymorphone has a high potential to be abused.
Dihydrocodeine is a semi-synthetic opioid analgesic prescribed for pain or severe dyspnea, or as an antitussive, either alone or compounded with paracetamol (acetaminophen) or aspirin. It was developed in Germany in 1908 and first marketed in 1911.
Remifentanil, marketed under the brand name Ultiva is a potent, short-acting synthetic opioid analgesic drug. It is given to patients during surgery to relieve pain and as an adjunct to an anaesthetic. Remifentanil is used for sedation as well as combined with other medications for use in general anesthesia. The use of remifentanil has made possible the use of high-dose opioid and low-dose hypnotic anesthesia, due to synergism between remifentanil and various hypnotic drugs and volatile anesthetics.
Nalbuphine, sold under the brand names Nubain among others, is an opioid analgesic which is used in the treatment of pain. It is given by injection into a vein, muscle, or fat.
Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. Dihydromorphine is a moderately strong analgesic and is used clinically in the treatment of pain and also is an active metabolite of the analgesic opioid drug dihydrocodeine. Dihydromorphine occurs in trace quantities in assays of opium on occasion, as does dihydrocodeine, dihydrothebaine, tetrahydrothebaine, etc. The process for manufacturing dihydromorphine from morphine for pharmaceutical use was developed in Germany in the late 19th century, with the synthesis being published in 1900 and the drug introduced clinically as Paramorfan shortly thereafter. A high-yield synthesis from tetrahydrothebaine was later developed.
Levobupivacaine (rINN) is a local anaesthetic drug indicated for minor and major surgical anaesthesia and pain management. It is a long-acting amide-type local anaesthetic that blocks nerve impulses by inhibiting sodium ion influx into the nerve cells. Levobupivacaine is the S-enantiomer of racemic bupivacaine and therefore similar in pharmacological effects. The drug typically starts taking effect within 15 minutes and can last up to 16 hours depending on factors such as site of administration and dosage.
Ketobemidone, sold under the brand name Ketogan among others, is a powerful synthetic opioid painkiller. Its effectiveness against pain is in the same range as morphine, and it also has some NMDA-antagonist properties imparted, in part, by its metabolite norketobemidone. This may make it useful for some types of pain that do not respond well to other opioids. It is marketed in Denmark, Iceland, Norway. Until 2024 it was available in, but is now withdrawn in Sweden. It is used for severe pain.
Nicocodeine is an opioid analgesic and cough suppressant, an ester of codeine closely related to dihydrocodeine and the codeine analogue of nicomorphine. It is not commonly used in most countries, but has activity similar to other opiates. Nicocodeine and nicomorphine were synthesized in 1904, and introduced in 1957 by Lannacher Heilmittel of Austria. Nicocodeine is metabolised in the liver by demethylation to produce nicomorphine, also known as 6-nicotinoylmorphine, and subsequently further metabolised to morphine. Side effects are similar to those of other opiates and include itching, nausea and respiratory depression. Related opioid analogues such as nicomorphine and nicodicodeine were first synthesized. The definitive synthesis, which involves treating anhydrous codeine base with nicotinic anhydride at 130 °C, was published by Pongratz and Zirm in Monatshefte für Chemie in 1957, simultaneously with the two analogues in an article about amides and esters of various organic acids.
Metopon is an opioid analogue that is a methylated derivative of hydromorphone which was invented in 1929 as an analgesic.
Tilidine, sold under the brand name Valoron among others, is a synthetic opioid analgesic, used mainly in Belgium, Bulgaria, Germany, Albania, Luxembourg, South Africa, and Switzerland for the treatment of moderate to severe pain, both acute and chronic. Its onset of pain relief after oral administration is about 10–15 minutes and peak relief from pain occurs about 25–50 minutes after administration.
Nefopam, sold under the brand name Acupan among others, is a centrally acting, non-opioid painkilling medication, with central stimulant and sympathomimetic properties that is primarily used to treat moderate to severe pain.
An equianalgesic chart is a conversion chart that lists equivalent doses of analgesics. Equianalgesic charts are used for calculation of an equivalent dose between different analgesics. Tables of this general type are also available for NSAIDs, benzodiazepines, depressants, stimulants, anticholinergics and others.
An opiate is an alkaloid substance derived from opium. It differs from the similar term opioid in that the latter is used to designate all substances, both natural and synthetic, that bind to opioid receptors in the brain. Opiates are alkaloid compounds naturally found in the opium poppy plant Papaver somniferum. The psychoactive compounds found in the opium plant include morphine, codeine, and thebaine. Opiates have long been used for a variety of medical conditions, with evidence of opiate trade and use for pain relief as early as the eighth century AD. Most opiates are considered drugs with moderate to high abuse potential and are listed on various "Substance-Control Schedules" under the Uniform Controlled Substances Act of the United States of America.
Codeine-6-glucuronide (C6G) is a major active metabolite of codeine and may be responsible for as much as 60% of the analgesic effects of codeine. C6G exhibits decreased immunosuppressive effects compared to codeine. During its metabolism, codeine is conjugated with glucuronic acid by the enzyme UDP-Glucuronosyltransferase-2B7 (UGT2B7) to form codeine-6-glucuronide.
Benzhydrocodone (INN) is an opioid prodrug of the morphinan class. Its chemical structure consists of hydrocodone coupled with benzoic acid. Benzhydrocodone itself is inactive and acts as a prodrug to hydrocodone upon cleavage of the benzoate portion of the molecule.
Dibutyrylmorphine is the 3,6-dibutyryl ester of morphine, first synthesized by the CR Alders Wright organization in the United Kingdom in 1875.