Ketobemidone

Last updated
Ketobemidone
Ketobemidone2DACS.svg
Clinical data
Trade names Ketogan
Other namesKetobemidone, Cliradon, Cymidon, Ketogan, Ketorax
AHFS/Drugs.com International Drug Names
Routes of
administration
By mouth, rectal, intravenous
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 34~40% (oral), 44% (rectal)
Elimination half-life 24 hours
Duration of action 35 hours
Identifiers
  • 1-[4-(3-Hydroxyphenyl)-1-methyl-4-piperidyl]propan-1-one
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.006.748 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C15H21NO2
Molar mass 247.338 g·mol−1
3D model (JSmol)
  • O=C(CC)C1(CCN(C)CC1)c2cc(O)ccc2
  • InChI=1S/C15H21NO2/c1-3-14(18)15(7-9-16(2)10-8-15)12-5-4-6-13(17)11-12/h4-6,11,17H,3,7-10H2,1-2H3 Yes check.svgY
  • Key:ALFGKMXHOUSVAD-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Ketobemidone, sold under the brand name Ketogan among others, is a powerful synthetic opioid painkiller. Its effectiveness against pain is in the same range as morphine, and it also has some NMDA-antagonist properties imparted, in part, by its metabolite norketobemidone. [2] This may make it useful for some types of pain that do not respond well to other opioids. [2] It is marketed in Denmark, Iceland, Norway. Until 2024 it was availble in, but is now withdrawn in Sweden. It is used for severe pain. [3]

Contents

History

Ketobemidone was first synthesized in 1942 by Eisleb and colleagues, [4] at the laboratory of I.G. Farbenindustrie at Hoechst during the Second World War. The first study of it in humans was published in 1946, [5] and it was introduced in clinical medicine shortly after. It was not in clinical use in the United States when the Controlled Substances Act 1970 was promulgated and was assigned to Schedule I with an ACSCN of 9628. As of 2013, no annual manufacturing quota was assigned by the DEA. [6]

Pfizer manufactures ketobemidone under the tradenames Ketogan and Ketorax. It is available as tablets, suppositories, and injection fluid. A sustained release formulation, sold as Ketodur, exists in some countries and contains 10 or 25 mg ketobemidone.

Pharmacology

Experiments on former addicts indicated it was quite addictive and in high doses, compared to other opioids, may have increased abuse potential in former and current opioid addicts. While some effort was first suggested for drafting of a resolution urging governments to stop manufacture and use of ketobemidone, [7] this result was not in agreement with clinical observations, and another study in 1958 did not find it more addictive than morphine. That study noticed that while for morphine the dose for euphoria is the same as that for analgesia, for ketobemidone the analgesic dose was well below the euphoric dose. Thus, even compared to morphine, ketobemidone may be much more effective without causing significant euphoria and thus having a lower risk of addiction under the supervision of a qualified clinician. [8] Ketobemidone is mostly used in the Scandinavian countries, with Denmark topping the statistics. [9]

Analgesia after 5-10 mg orally or 5–7.5 mg intravenously lasts 3–5 hours. Ketobemidone is also available in preparations with a spasmolytic, which can improve the analgesia.

Metabolism

Ketobemidone is mainly metabolized by conjugation of the phenolic hydroxyl group, and by N-demethylation. Only about 13-24% is excreted unchanged after intravenous administration. [10]

Chemistry

Ketobemidone is 1-methyl-4-(3-hydroxyphenyl)-4-propionylpiperidine. It is usually available as the hydrochloride, which is a white powder. It is synthesized by alkylating (3-methoxyphenyl)acetonitrile with bis(2-chloroethyl)methylamine, followed by reaction with ethylmagnesium bromide, and finally O-demethylation with hydrobromic acid. [11]

Because of a strong vesicant nature of bis(2-chloroethyl)methylamine there are many other routes developed for obtaining ketobemidone. A route depicted below lays through first alkylating the same (3-methoxyphenyl)acetonitrile with 2-chloro-N,N-dimethylethylamine or 2-chloro-N-benzyl-N-methylethylamine. [12] Next, those amines are alkylated once again using a mixed 1-bromo-2-chloroethane, thus completing the piperidine ring and obtaining a quaternary ammonium salt, which can be dequaternized using thiophenol salt [13] (for N,N-dimethylammonium) or catalytic hydrogenation [14] (for both compounds) to a common 4-(3-methoxyphenyl)-4-cyano-1-methyl-pyperidine. The latter yields ketobemidone after Grignard reaction with ethylmagnesium bromide and ether cleavage.

Ketobemidone synthesis.svg

See also

Related Research Articles

<span class="mw-page-title-main">Morphine</span> Pain medication of the opiate family

Morphine, formerly also called morphia, is an opiate that is found naturally in opium, a dark brown resin produced by drying the latex of opium poppies. It is mainly used as an analgesic. There are numerous methods used to administer morphine: oral; sublingual; via inhalation; injection into a muscle, injection under the skin, or injection into the spinal cord area; transdermal; or via rectal suppository. It acts directly on the central nervous system (CNS) to induce analgesia and alter perception and emotional response to pain. Physical and psychological dependence and tolerance may develop with repeated administration. It can be taken for both acute pain and chronic pain and is frequently used for pain from myocardial infarction, kidney stones, and during labor. Its maximum effect is reached after about 20 minutes when administered intravenously and 60 minutes when administered by mouth, while the duration of its effect is 3–7 hours. Long-acting formulations of morphine are sold under the brand names MS Contin and Kadian, among others. Generic long-acting formulations are also available.

<span class="mw-page-title-main">Oxycodone</span> Opioid medication

Oxycodone, sold under the brand name Roxicodone and OxyContin among others, is a semi-synthetic opioid used medically for treatment of moderate to severe pain. It is highly addictive and is a commonly abused drug. It is usually taken by mouth, and is available in immediate-release and controlled-release formulations. Onset of pain relief typically begins within fifteen minutes and lasts for up to six hours with the immediate-release formulation. In the United Kingdom, it is available by injection. Combination products are also available with paracetamol (acetaminophen), ibuprofen, naloxone, naltrexone, and aspirin.

<span class="mw-page-title-main">Hydromorphone</span> Opioid medication used for pain relief

Hydromorphone, also known as dihydromorphinone, and sold under the brand name Dilaudid among others, is a morphinan opioid used to treat moderate to severe pain. Typically, long-term use is only recommended for pain due to cancer. It may be used by mouth or by injection into a vein, muscle, or under the skin. Effects generally begin within half an hour and last for up to five hours. A 2016 Cochrane review found little difference in benefit between hydromorphone and other opioids for cancer pain.

<span class="mw-page-title-main">Remifentanil</span> Synthetic opioid analgesic

Remifentanil, marketed under the brand name Ultiva is a potent, short-acting synthetic opioid analgesic drug. It is given to patients during surgery to relieve pain and as an adjunct to an anaesthetic. Remifentanil is used for sedation as well as combined with other medications for use in general anesthesia. The use of remifentanil has made possible the use of high-dose opioid and low-dose hypnotic anesthesia, due to synergism between remifentanil and various hypnotic drugs and volatile anesthetics.

<span class="mw-page-title-main">Nalbuphine</span> Opioid analgesic

Nalbuphine, sold under the brand names Nubain among others, is an opioid analgesic which is used in the treatment of pain. It is given by injection into a vein, muscle, or fat.

<span class="mw-page-title-main">Dihydromorphine</span> Semi-synthetic opioid analgesic drug

Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. Dihydromorphine is a moderately strong analgesic and is used clinically in the treatment of pain and also is an active metabolite of the analgesic opioid drug dihydrocodeine. Dihydromorphine occurs in trace quantities in assays of opium on occasion, as does dihydrocodeine, dihydrothebaine, tetrahydrothebaine, etc. The process for manufacturing dihydromorphine from morphine for pharmaceutical use was developed in Germany in the late 19th century, with the synthesis being published in 1900 and the drug introduced clinically as Paramorfan shortly thereafter. A high-yield synthesis from tetrahydrothebaine was later developed.

<span class="mw-page-title-main">Levorphanol</span> Opioid analgesic drug

Levorphanol is an opioid medication used to treat moderate to severe pain. It is the levorotatory enantiomer of the compound racemorphan. Its dextrorotatory counterpart is dextrorphan.

<span class="mw-page-title-main">Piritramide</span> Synthetic opioid

Piritramide(R-3365, trade names Dipidolor, Piridolan, Pirium and others) is a synthetic opioid analgesic that is marketed in certain European countries including: Austria, Belgium, Czech Republic, Slovenia, Germany and the Netherlands. It comes in free form, is about 0.75x times as potent as morphine and is given parenterally for the treatment of severe pain. Nausea, vomiting, respiratory depression and constipation are believed to be less frequent with piritramide than with morphine, and it produces more rapid-onset analgesia when compared to morphine and pethidine. After intravenous administration the onset of analgesia is as little as 1–2 minutes, which may be related to its great lipophilicity. The analgesic and sedative effects of piritramide are believed to be potentiated with phenothiazines and its emetic (nausea/vomiting-inducing) effects are suppressed. The volume of distribution is 0.7-1 L/kg after a single dose, 4.7-6 L/kg after steady-state concentrations are achieved and up to 11.1 L/kg after prolonged dosing.

<span class="mw-page-title-main">Nicomorphine</span> Opioid analgesic drug

Nicomorphine is the 3,6-dinicotinate ester of morphine. It is a strong opioid agonist analgesic two to three times as potent as morphine with a side effect profile similar to that of dihydromorphine, morphine, and diamorphine.

<span class="mw-page-title-main">Codeine</span> Opiate and prodrug of morphine used to treat pain

Codeine is an opiate and prodrug of morphine mainly used to treat pain, coughing, and diarrhea. It is also commonly used as a recreational drug. It is found naturally in the sap of the opium poppy, Papaver somniferum. It is typically used to treat mild to moderate degrees of pain. Greater benefit may occur when combined with paracetamol (acetaminophen) or a nonsteroidal anti-inflammatory drug (NSAID) such as aspirin or ibuprofen. Evidence does not support its use for acute cough suppression in children. In Europe, it is not recommended as a cough medicine in those under 12 years of age. It is generally taken by mouth. It typically starts working after half an hour, with maximum effect at two hours. Its effects last for about four to six hours. Codeine exhibits abuse potential similar to other opioid medications, including a risk of addiction and overdose.

<span class="mw-page-title-main">Phenadoxone</span> Opioid analgesic drug

Phenadoxone is an opioid analgesic of the open chain class invented in Germany by Hoechst in 1947. It is one of a handful of useful synthetic analgesics which were used in the United States for various lengths of time in the 20 or so years after the end of the Second World War but which were withdrawn from the market for various or no known reason and which now are mostly in Schedule I of the United States' Controlled Substances Act of 1970, or in Schedule II but not produced or marketed in the US. Others on this list are ketobemidone (Ketogin), dextromoramide, phenazocine, dipipanone, piminodine (Alvodine), propiram (Algeril), anileridine (Leritine) and alphaprodine (Nisentil).

<span class="mw-page-title-main">Hydroxypethidine</span> Chemical compound

Hydroxypethidine (Bemidone) is an opioid analgesic that is an analogue of the more commonly used pethidine (meperidine). Hydroxypethidine is slightly more potent than meperidine as an analgesic, 1.5x meperidine in potency, and it also has NMDA antagonist properties like its close relative ketobemidone.

<span class="mw-page-title-main">Oripavine</span> Chemical compound

Oripavine is an opioid and the major metabolite of thebaine. It is the parent compound from which a series of semi-synthetic opioids are derived, which includes the compounds etorphine and buprenorphine. Although its analgesic potency is comparable to morphine, it is not used clinically due to its severe toxicity and low therapeutic index. Being a precursor to a series of extremely strong opioids, oripavine is a controlled substance in some jurisdictions.

<span class="mw-page-title-main">Prodine</span> Opioid analgesic

Prodine is an opioid analgesic that is an analog of pethidine (meperidine). It was developed in Germany in the late 1940s.

<span class="mw-page-title-main">Piminodine</span> Opioid analgesic drug

Piminodine (Alvodine) is an opioid analgesic that is an analogue of pethidine (meperidine). It was used in medicine briefly during the 1960s and 70s, but has largely fallen out of clinical use. It was used particularly for obstetric analgesia and in dental procedures and, like pethidine, could be combined with hydroxyzine to intensify the effects. The duration of action is 2–4 hours; 7.5–10 mg via the subcutaneous route is the most common starting dose, being equal to 80–100 mg of pethidine, 40–60 mg of alphaprodine and 10 mg of morphine. Oral formulations were also available.

<span class="mw-page-title-main">Propiram</span> Opioid analgesic drug

Propiram is a partial μ-opioid receptor agonist and weak μ antagonist analgesic from the ampromide family of drugs related to other drugs such as phenampromide and diampromide. It was invented in 1963 in the United Kingdom by Bayer but was not widely marketed, although it saw some limited clinical use, especially in dentistry. Propiram reached Phase III clinical trials in the United States and Canada.

<span class="mw-page-title-main">Phenampromide</span> Chemical compound

Phenampromide is an opioid analgesic from the ampromide family of drugs, related to other drugs such as propiram and diampromide. It was invented in the 1960s by American Cyanamid Co. Although never given a general release, it was trialled and 50 mg codeine ≈ 60 mg phenampromide. Tests on the 2 isomers showed that all of the analgesic effects were caused by the (S) isomer. Introduction of a phenyl group to the 4-position of the piperidine-ring produces a drug 60-fold more potent than morphine. The most potent reported derivative is 4-hydroxy-4-phenyl phenapromide which displays analgesic activity some x150 greater than morphine.

An equianalgesic chart is a conversion chart that lists equivalent doses of analgesics. Equianalgesic charts are used for calculation of an equivalent dose between different analgesics. Tables of this general type are also available for NSAIDs, benzodiazepines, depressants, stimulants, anticholinergics and others.

<span class="mw-page-title-main">Bucinnazine</span> Opioid analgesic drug

Bucinnazine is an opioid analgesic drug that was widely used in China to treat pain in cancer patients as of 1986. It is one of the most potent compounds among a series of piperazine-amides first synthesized and reported in Japan in the 1970s. Bucinnazine has analgesic potency comparable to that of morphine, but with a relatively higher therapeutic index.

<span class="mw-page-title-main">RB-120</span> Chemical compound

RB-120 is an orally active analog of the drug RB-101. It acts as an enkephalinase inhibitor, which is used in scientific research. Via intravenous administration, it is approximately three times as potent as RB-101 or twice as potent as the isolated (S,S) isomer of RB101. However, via i.p. administration it is approximately twice as potent as racemic RB-101 and about as potent as the isolated (S,S) isomer of RB101. During i.v. administration RB120 is approximately twice as weak as morphine in terms of analgesia; however, it is 16x weaker during i.p. and p.o. administration.

References

  1. https://www.ema.europa.eu/documents/psusa/ketobemidone-list-nationally-authorised-medicinal-products-psusa/0001807/202005_en.pdf [ bare URL PDF ]
  2. 1 2 Ebert B, Thorkildsen C, Andersen S, Christrup LL, Hjeds H (September 1998). "Opioid analgesics as noncompetitive N-methyl-D-aspartate (NMDA) antagonists". Biochemical Pharmacology. 56 (5): 553–9. doi:10.1016/S0006-2952(98)00088-4. PMID   9783723.
  3. Brayfield A, ed. (9 January 2017). "Ketobemidone Hydrochloride: Martindale: The Complete Drug Reference". MedicinesComplete. London, UK: Pharmaceutical Press. Retrieved 6 September 2017.
  4. GBpatent 609763,"Manufacture of piperidyl ketones",published 1948-10-06, assigned to Ciba Ltd.
  5. USpatent 2486796,Meischer, K.; Kaegi, H.,"Esters of 1-alkyl-4-hydroxyphenyl-piperidil-4-ketones",issued 1949-11-01
  6. "DEA Diversion Control Division". Archived from the original on 2017-05-14. Retrieved 2014-05-03.
  7. "Development of Synthetic Narcotic Drugs". Bulletin on Narcotic Drugs. 1956 (1): 11–14. 1956. Retrieved 2012-07-05.
  8. Bondesson, U. (1982). Biological Fate of Ketobemidone in Man. Vol. 68. ISBN   978-91-554-1243-2.{{cite book}}: |journal= ignored (help)
  9. "Statistical Information on Narcotic Drugs" (PDF). INCB. 2004. Archived from the original (PDF) on 2006-10-07. Retrieved 2006-09-07.
  10. Bondesson U, Hartvig P, Danielsson B (1981). "Quantitative determination of the urinary excretion of ketobemidone and four of its metabolites after intravenous and oral administration in man". Drug Metabolism and Disposition. 9 (4): 376–80. PMID   6114838.
  11. William Andrew Publishing (2013). "Cetobemidone" (excerpt). Pharmaceutical Manufacturing Encyclopedia. Elsevier. ISBN   9780815518563.
  12. Avison AW, Morrison AL (1950). "303. Synthetic Analgesics. Part VI. The Synthesis of Ketobemidone". Journal of the Chemical Society (Resumed). 1950: 1469–1471. doi:10.1039/JR9500001469.
  13. Shamma M, Deno NC, Remar JF (1966). "The selective demethylation of quaternary ammonium salts". Tetrahedron Letters. 7 (13): 1375–1379. doi:10.1016/s0040-4039(01)99725-4.
  14. Kägi H, Miescher K (1949). "Über eine neue Synthese morphinähnlich wirkender 4-Phenylpiperidin-4-alkylketone und verwandter Verbindungen". Helvetica Chimica Acta. 32 (7): 2489–2507. doi:10.1002/hlca.19490320736.