Biological half-life

Last updated

Time course of drug plasma concentrations over 96 hours following oral administrations every 24 hours (t). Absorption half-life 1 h, elimination half-life 12 h. Linear PK Example.png
Time course of drug plasma concentrations over 96 hours following oral administrations every 24 hours (τ). Absorption half-life 1 h, elimination half-life 12 h.

Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (Cmax) to half of Cmax in the blood plasma. [1] [2] [3] [4] [5] It is denoted by the abbreviation . [2] [4]

Contents

This is used to measure the removal of things such as metabolites, drugs, and signalling molecules from the body. Typically, the biological half-life refers to the body's natural detoxification (cleansing) through liver metabolism and through the excretion of the measured substance through the kidneys and intestines. This concept is used when the rate of removal is roughly exponential. [6]

In a medical context, half-life explicitly describes the time it takes for the blood plasma concentration of a substance to halve (plasma half-life) its steady-state when circulating in the full blood of an organism. This measurement is useful in medicine, pharmacology and pharmacokinetics because it helps determine how much of a drug needs to be taken and how frequently it needs to be taken if a certain average amount is needed constantly. By contrast, the stability of a substance in plasma is described as plasma stability. This is essential to ensure accurate analysis of drugs in plasma and for drug discovery.

The relationship between the biological and plasma half-lives of a substance can be complex depending on the substance in question, due to factors including accumulation in tissues, protein binding, active metabolites, and receptor interactions. [7]

Examples

Water

The biological half-life of water in a human is about 7 to 14 days. It can be altered by behavior. Drinking large amounts of alcohol will reduce the biological half-life of water in the body. [8] [9] This has been used to decontaminate patients who are internally contaminated with tritiated water. The basis of this decontamination method is to increase the rate at which the water in the body is replaced with new water.

Alcohol

The removal of ethanol (drinking alcohol) through oxidation by alcohol dehydrogenase in the liver from the human body is limited. Hence the removal of a large concentration of alcohol from blood may follow zero-order kinetics. Also the rate-limiting steps for one substance may be in common with other substances. For instance, the blood alcohol concentration can be used to modify the biochemistry of methanol and ethylene glycol. In this way the oxidation of methanol to the toxic formaldehyde and formic acid in the human body can be prevented by giving an appropriate amount of ethanol to a person who has ingested methanol. Methanol is very toxic and causes blindness and death. A person who has ingested ethylene glycol can be treated in the same way. Half life is also relative to the subjective metabolic rate of the individual in question.

Common prescription medications

SubstanceBiological half-life
Adenosine Less than 10 seconds (estimate) [10]
Norepinephrine 2 minutes [11]
Oxaliplatin 14 minutes [12]
Zaleplon 1 hour [13]
Morphine 1.5–4.5 hours [14]
Flurazepam 2.3 hours [15]

Active metabolite (N-desalkylflurazepam): 47–100 hours [15]

Methotrexate 3–10 hours (lower doses),

8–15 hours (higher doses) [16]

Methadone 15–72 hours

in rare cases up to 8 days [17]

Diazepam 20–50 hours [18]

Active metabolite (nordazepam): 30–200 hours [18]

Phenytoin 20–60 hours [19]
Buprenorphine 28–35 hours [20]
Clonazepam 30–40 hours [21]
Donepezil 3 days (70 hours) [22]
Fluoxetine 4–6 days (under continuous administration) [23]

Active lipophilic metabolite (norfluoxetine): 4–16 days [23]

Amiodarone 14–107 days [24]
Vandetanib 19 days [25]
Dutasteride 21–35 days (under continuous administration) [26]
Bedaquiline 165 days [27]

Metals

The biological half-life of caesium in humans is between one and four months. This can be shortened by feeding the person prussian blue. The prussian blue in the digestive system acts as a solid ion exchanger which absorbs the caesium while releasing potassium ions.

For some substances, it is important to think of the human or animal body as being made up of several parts, each with their own affinity for the substance, and each part with a different biological half-life (physiologically-based pharmacokinetic modelling). Attempts to remove a substance from the whole organism may have the effect of increasing the burden present in one part of the organism. For instance, if a person who is contaminated with lead is given EDTA in a chelation therapy, then while the rate at which lead is lost from the body will be increased, the lead within the body tends to relocate into the brain where it can do the most harm. [28]

Peripheral half-life

Some substances may have different half-lives in different parts of the body. For example, oxytocin has a half-life of typically about three minutes in the blood when given intravenously. Peripherally administered (e.g. intravenous) peptides like oxytocin cross the blood-brain-barrier very poorly, although very small amounts (< 1%) do appear to enter the central nervous system in humans when given via this route. [31] In contrast to peripheral administration, when administered intranasally via a nasal spray, oxytocin reliably crosses the blood–brain barrier and exhibits psychoactive effects in humans. [32] [33] In addition, unlike the case of peripheral administration, intranasal oxytocin has a central duration of at least 2.25 hours and as long as 4 hours. [34] [35] In likely relation to this fact, endogenous oxytocin concentrations in the brain have been found to be as much as 1000-fold higher than peripheral levels. [31]

Rate equations

First-order elimination

Timeline of an exponential decay process [36] [37] [38]
Time (t)Percent of initial valuePercent completion
50%50%
t½ × 225%75%
t½ × 312.5%87.5%
t½ × 3.32210.00%90.00%
t½ × 46.25%93.75%
t½ × 4.3225.00%95.00%
t½ × 53.125%96.875%
t½ × 61.5625%98.4375%
t½ × 70.78125%99.21875%
t½ × 10~0.09766%~99.90234%

Half-times apply to processes where the elimination rate is exponential. If is the concentration of a substance at time , its time dependence is given by

where k is the reaction rate constant. Such a decay rate arises from a first-order reaction where the rate of elimination is proportional to the amount of the substance: [39]

The half-life for this process is [39]

Alternatively, half-life is given by

where λz is the slope of the terminal phase of the time–concentration curve for the substance on a semilogarithmic scale. [40] [41]

Half-life is determined by clearance (CL) and volume of distribution (VD) and the relationship is described by the following equation:

In clinical practice, this means that it takes 4 to 5 times the half-life for a drug's serum concentration to reach steady state after regular dosing is started, stopped, or the dose changed. So, for example, digoxin has a half-life (or t½) of 24–36 h; this means that a change in the dose will take the best part of a week to take full effect. For this reason, drugs with a long half-life (e.g., amiodarone, elimination t½ of about 58 days) are usually started with a loading dose to achieve their desired clinical effect more quickly.

Biphasic half-life

Many drugs follow a biphasic elimination curve — first a steep slope then a shallow slope:

STEEP (initial) part of curve —> initial distribution of the drug in the body.
SHALLOW part of curve —> ultimate excretion of drug, which is dependent on the release of the drug from tissue compartments into the blood.

The longer half-life is called the terminal half-life and the half-life of the largest component is called the dominant half-life. [39] For a more detailed description see Pharmacokinetics § Multi-compartmental models.

See also

Related Research Articles

<span class="mw-page-title-main">Half-life</span> Time for exponential decay to remove half of a quantity

Half-life is the time required for a quantity to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential decay. For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life is doubling time.

<span class="mw-page-title-main">Pharmacodynamics</span> Area of Academic Study

Pharmacodynamics (PD) is the study of the biochemical and physiologic effects of drugs. The effects can include those manifested within animals, microorganisms, or combinations of organisms.

In pharmacology, the volume of distribution is the theoretical volume that would be necessary to contain the total amount of an administered drug at the same concentration that it is observed in the blood plasma. In other words, it is the ratio of amount of drug in a body (dose) to concentration of the drug that is measured in blood, plasma, and un-bound in interstitial fluid.

In pharmacokinetics, the effective half-life is the rate of accumulation or elimination of a biochemical or pharmacological substance in an organism; it is the analogue of biological half-life when the kinetics are governed by multiple independent mechanisms. This is seen when there are multiple mechanisms of elimination, or when a drug occupies multiple pharmacological compartments. It reflects the cumulative effect of the individual half-lives, as observed by the changes in the actual serum concentration of a drug under a given dosing regimen. The complexity of biological systems means that most pharmacological substances do not have a single mechanism of elimination, and hence the observed or effective half-life does not reflect that of a single process, but rather the summation of multiple independent processes.

In pharmacology, clearance is a pharmacokinetic parameter representing the efficiency of drug elimination. This is the rate of elimination of a substance divided by its concentration. The parameter also indicates the theoretical volume of plasma from which a substance would be completely removed per unit time. Usually, clearance is measured in L/h or mL/min. The quantity reflects the rate of drug elimination divided by plasma concentration. Excretion, on the other hand, is a measurement of the amount of a substance removed from the body per unit time. While clearance and excretion of a substance are related, they are not the same thing. The concept of clearance was described by Thomas Addis, a graduate of the University of Edinburgh Medical School.

Distribution in pharmacology is a branch of pharmacokinetics which describes the reversible transfer of a drug from one location to another within the body.

<span class="mw-page-title-main">Rimexolone</span> Pharmaceutical drug

Rimexolone is a glucocorticoid steroid used to treat inflammation in the eye. It is marketed as a 1% eye drop suspension under the trade name Vexol by Alcon Laboratories, but was discontinued in the US and other countries.

<span class="mw-page-title-main">Phenprocoumon</span> Drug

Phenprocoumon is a long-acting blood thinner drug to be taken by mouth, and a derivative of coumarin. It acts as a vitamin K antagonist and inhibits blood clotting (coagulation) by blocking synthesis of coagulation factors II, VII, IX and X. It is used for the prophylaxis and treatment of thromboembolic disorders such as heart attacks and pulmonary (lung) embolism. The most common adverse effect is bleeding. The drug interacts with a large number of other medications, including aspirin and St John's Wort. It is the standard coumarin used in Germany, Austria, and other European countries.

<span class="mw-page-title-main">Lercanidipine</span> Antihypertensive drug of the calcium channel blocker class

Lercanidipine is an antihypertensive drug. It belongs to the dihydropyridine class of calcium channel blockers, which work by relaxing and opening the blood vessels allowing the blood to circulate more freely around the body. This lowers the blood pressure and allows the heart to work more efficiently.

<span class="mw-page-title-main">Trifluridine</span> Chemical compound

Trifluridine is an anti-herpesvirus antiviral drug, used primarily on the eye. It was sold under the trade name Viroptic by Glaxo Wellcome, now merged into GlaxoSmithKline. The brand is now owned by Monarch Pharmaceuticals, which is wholly owned by King Pharmaceuticals.

<span class="mw-page-title-main">Flunarizine</span> Calcium channel blocker medication

Flunarizine, sold under the brand name Sibelium among others, is a drug classified as a calcium antagonist which is used for various indications. It is not available by prescription in the United States or Japan. The drug was discovered at Janssen Pharmaceutica (R14950) in 1968.

<span class="mw-page-title-main">Pharmacokinetics</span> Branch of pharmacology

Pharmacokinetics, sometimes abbreviated as PK, is a branch of pharmacology dedicated to describing how the body affects a specific substance after administration. The substances of interest include any chemical xenobiotic such as pharmaceutical drugs, pesticides, food additives, cosmetics, etc. It attempts to analyze chemical metabolism and to discover the fate of a chemical from the moment that it is administered up to the point at which it is completely eliminated from the body. Pharmacokinetics is based on mathematical modeling that places great emphasis on the relationship between drug plasma concentration and the time elapsed since the drug's administration. Pharmacokinetics is the study of how an organism affects the drug, whereas pharmacodynamics (PD) is the study of how the drug affects the organism. Both together influence dosing, benefit, and adverse effects, as seen in PK/PD models.

<span class="mw-page-title-main">Acemetacin</span> NSAID analgesic medication

Acemetacin is a non-steroidal anti-inflammatory drug (NSAID) used for the treatment of osteoarthritis, rheumatoid arthritis, lower back pain, and relieving post-operative pain. It is manufactured by Merck KGaA under the tradename Emflex, and is available in the UK and other countries as a prescription-only drug.

<span class="mw-page-title-main">Racecadotril</span> Chemical compound

Racecadotril, also known as acetorphan, is an antidiarrheal medication which acts as a peripheral enkephalinase inhibitor. Unlike other opioid medications used to treat diarrhea, which reduce intestinal motility, racecadotril has an antisecretory effect — it reduces the secretion of water and electrolytes into the intestine. It is available in France and other European countries as well as most of South America and some South East Asian countries, but not in the United States. It is sold under the tradename Hidrasec, among others. Thiorphan is the active metabolite of racecadotril, which exerts the bulk of its inhibitory actions on enkephalinases.

The elimination rate constantK or Ke is a value used in pharmacokinetics to describe the rate at which a drug is removed from the human system.

<span class="mw-page-title-main">Iopentol</span> Chemical compound

Iopentol is a pharmaceutical drug that was used as a radiocontrast agent for X-ray imaging in Europe.

In the field of pharmacokinetics, the area under the curve (AUC) is the definite integral of the concentration of a drug in blood plasma as a function of time. In practice, the drug concentration is measured at certain discrete points in time and the trapezoidal rule is used to estimate AUC. In pharmacology, the area under the plot of plasma concentration of a drug versus time after dosage gives insight into the extent of exposure to a drug and its clearance rate from the body.

The plateau principle is a mathematical model or scientific law originally developed to explain the time course of drug action (pharmacokinetics). The principle has wide applicability in pharmacology, physiology, nutrition, biochemistry, and system dynamics. It applies whenever a drug or nutrient is infused or ingested at a relatively constant rate and when a constant fraction is eliminated during each time interval. Under these conditions, any change in the rate of infusion leads to an exponential increase or decrease until a new level is achieved. This behavior is also called an approach to steady state because rather than causing an indefinite increase or decrease, a natural balance is achieved when the rate of infusion or production is balanced by the rate of loss.

<span class="mw-page-title-main">Netupitant</span> Chemical compound

Netupitant is an antiemetic medication. In the United States, the combinations of netupitant/palonosetron and the prodrug fosnetupitant/palonosetron are approved by the Food and Drug Administration for the prevention of acute and delayed chemotherapy-induced nausea and vomiting, including highly emetogenic chemotherapy such as with cisplatin. In the European Union, the combinations are approved by the European Medicines Agency (EMA) for the same indication.

<span class="mw-page-title-main">Velpatasvir</span> Chemical compound

Velpatasvir is an NS5A inhibitor which is used together with sofosbuvir in the treatment of hepatitis C infection of all six major genotypes.

References

  1. "Elimination Half-Life". Pharmacology in one semester. Archived from the original on 22 October 2020. Retrieved 20 February 2020.
  2. 1 2 "Definition of Half-Life (t½)". AIDSinfo. 19 February 2020. Archived from the original on 20 February 2020. Retrieved 20 February 2020.
  3. Curry, Stephen H. (1993). "PHARMACOKINETICS OF ANTIPSYCHOTIC DRUGS". Antipsychotic Drugs and their Side-Effects. Elsevier. pp. 127–144. doi:10.1016/b978-0-12-079035-7.50015-4. ISBN   978-0-12-079035-7. The elimination half-life measures the kinetics of loss of drug from the body as a whole once all distribution equilibria have been achieved.
  4. 1 2 Dasgupta, Amitava; Krasowski, Matthew D. (2020). "Pharmacokinetics and therapeutic drug monitoring". Therapeutic Drug Monitoring Data. Elsevier. pp. 1–17. doi:10.1016/b978-0-12-815849-4.00001-3. ISBN   978-0-12-815849-4. S2CID   209258489. The half-life of a drug is the time required for the serum concentration to be reduced by 50%. Once the half-life of the drug is known, the time required for clearance can be estimated. Approximately 97% of the drug is eliminated by 5 halflives, while ~99% is eliminated by 7 half-lives.
  5. Toutain, P. L.; Bousquet-Melou, A. (2004). "Plasma terminal half-life" (PDF). Journal of Veterinary Pharmacology and Therapeutics. 27 (6): 427–439. doi:10.1111/j.1365-2885.2004.00600.x. PMID   15601438. Archived from the original (PDF) on 20 February 2020. Following i.v. administration, the terminal half-life is the time required for plasma/blood concentration to decrease by 50% after pseudo-equilibrium of distribution has been reached; then, terminal half-life is computed when the decrease in drug plasma concentration is due only to drug elimination, and the term 'elimination half-life' is applicable. Therefore, it is not the time necessary for the amount of the administered drug to fall by one half.
  6. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " Biological Half Life ". doi : 10.1351/goldbook.B00658
  7. Lin VW; Cardenas DD (2003). Spinal Cord Medicine. Demos Medical Publishing, LLC. p. 251. ISBN   1-888799-61-7.
  8. Nordberg, Gunnar (2007). Handbook on the toxicology of metals. Amsterdam: Elsevier. p. 119. ISBN   978-0-12-369413-3.
  9. Silk, Kenneth R.; Tyrer, Peter J. (2008). Cambridge textbook of effective treatments in psychiatry. Cambridge, UK: Cambridge University Press. p. 295. ISBN   978-0-521-84228-0.
  10. Haberfeld H, ed. (2020). Austria-Codex (in German). Vienna: Österreichischer Apothekerverlag. Adenosin Baxter3 mg/ml Injektionslösung.
  11. Haberfeld H, ed. (2020). Austria-Codex (in German). Vienna: Österreichischer Apothekerverlag. Noradrenalin Orpha 1 mg/ml Konzentrat zur Herstellung einer Infusionslösung.
  12. Ehrsson, Hans; et al. (Winter 2002). "Pharmacokinetics of oxaliplatin in humans". Medical Oncology. 19 (4): 261–5. doi:10.1385/MO:19:4:261. PMID   12512920. S2CID   1068099. Archived from the original on 28 September 2007. Retrieved 28 March 2007.
  13. Zaleplon Monograph . Accessed 15 April 2021.
  14. Morphine Monograph . Accessed 15 April 2021.
  15. 1 2 Flurazepam Monograph . Accessed 15 April 2021.
  16. "Trexall, Otrexup (methotrexate) dosing, indications, interactions, adverse effects, and more". reference.medscape.com.
  17. Manfredonia, John (March 2005). "Prescribing Methadone for Pain Management in End-of-Life Care". Journal of the American Osteopathic Association. 105 (3 supplement): S18-21. PMID   18154194. Archived from the original on 20 May 2007. Retrieved 29 January 2007.
  18. 1 2 Diazepam Monograph . Accessed 15 April 2021.
  19. Haberfeld H, ed. (2020). Austria-Codex (in German). Vienna: Österreichischer Apothekerverlag. Epilan D 100 mg-Tabletten.
  20. Buprenorphine Monograph . Accessed 15 April 2021.
  21. "Klonopin (clonazepam) Prescribing Guide" (PDF). Genetech USA, Inc. October 2017. Retrieved 20 January 2019.
  22. Asiri, Yousif A.; Mostafa, Gamal A.E. (2010). "Donepezil". Profiles of Drug Substances, Excipients and Related Methodology. Vol. 35. Elsevier. pp. 117–150. doi:10.1016/s1871-5125(10)35003-5. ISBN   978-0-12-380884-4. ISSN   1871-5125. PMID   22469221. Plasma donepezil concentrations decline with a half-life of approximately 70 h. Sex, race, and smoking history have no clinically significant influence on plasma concentrations of donepezil [46–51].
  23. 1 2 Fluoxetine Monograph . Accessed 15 April 2021.
  24. Haberfeld H, ed. (2020). Austria-Codex (in German). Vienna: Österreichischer Apothekerverlag. Sedacoron 200 mg-Tabletten.
  25. "Caprelsa (vandetanib) Tablets, for Oral Use. Full Prescribing Information" (PDF). Sanofi Genzyme, Cambridge, MA, Dec 2016. Retrieved 24 February 2020.
  26. Haberfeld H, ed. (2020). Austria-Codex (in German). Vienna: Österreichischer Apothekerverlag. Avodart 0,5 mg Weichkapseln.
  27. "Sirturo (bedaquiline) Tablets. Full Prescribing Information" (PDF). Janssen Products, Dec 2012. Retrieved 24 February 2020.
  28. Nikolas C Papanikolaou; Eleftheria G Hatzidaki; Stamatis Belivanis; George N Tzanakakis; Aristidis M Tsatsakis (2005). "Lead toxicity update. A brief review". Medical Science Monitor. 11 (10): RA329-36. PMID   16192916.
  29. Griffin et al. 1975 as cited in ATSDR 2005
  30. Rabinowitz et al. 1976 as cited in ATSDR 2005
  31. 1 2 Baribeau, Danielle A; Anagnostou, Evdokia (2015). "Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits". Frontiers in Neuroscience. 9: 335. doi: 10.3389/fnins.2015.00335 . ISSN   1662-453X. PMC   4585313 . PMID   26441508.
  32. Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 7: Neuropeptides". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 195. ISBN   9780071481274. Oxytocin can be delivered to humans via nasal spray following which it crosses the blood–brain barrier. ... In a double-blind experiment, oxytocin spray increased trusting behavior compared to a placebo spray in a monetary game with real money at stake.
  33. McGregor IS, Callaghan PD, Hunt GE (May 2008). "From ultrasocial to antisocial: a role for oxytocin in the acute reinforcing effects and long-term adverse consequences of drug use?". British Journal of Pharmacology. 154 (2): 358–68. doi:10.1038/bjp.2008.132. PMC   2442436 . PMID   18475254. Recent studies also highlight remarkable anxiolytic and prosocial effects of intranasally administered OT in humans, including increased 'trust', decreased amygdala activation towards fear-inducing stimuli, improved recognition of social cues and increased gaze directed towards the eye regions of others (Kirsch et al., 2005; Kosfeld et al., 2005; Domes et al., 2006; Guastella et al., 2008)
  34. Weisman O, Zagoory-Sharon O, Feldman R (2012). "Intranasal oxytocin administration is reflected in human saliva". Psychoneuroendocrinology . 37 (9): 1582–6. doi:10.1016/j.psyneuen.2012.02.014. PMID   22436536. S2CID   25253083.
  35. Huffmeijer R, Alink LR, Tops M, Grewen KM, Light KC, Bakermans-Kranenburg MJ, Ijzendoorn MH (2012). "Salivary levels of oxytocin remain elevated for more than two hours after intranasal oxytocin administration". Neuro Endocrinology Letters . 33 (1): 21–5. PMID   22467107.
  36. Miles Hacker; William S. Messer; Kenneth A. Bachmann (19 June 2009). Pharmacology: Principles and Practice. Academic Press. p. 205. ISBN   978-0-08-091922-5.
  37. Frymoyer, Adam (2019). "Pharmacokinetic Considerations in Neonates". Infectious Disease and Pharmacology. pp. 123–139. doi:10.1016/B978-0-323-54391-0.00011-4. ISBN   9780323543910. S2CID   57512164.
  38. Chan, Patrick; Uchizono, James A. (2015). "Pharmacokinetics and Pharmacodynamics of Anesthetics". Essentials of Pharmacology for Anesthesia, Pain Medicine, and Critical Care. pp. 3–47. doi:10.1007/978-1-4614-8948-1_1. ISBN   978-1-4614-8947-4.
  39. 1 2 3 Bonate, Peter L.; Howard, Danny R. (2004). Clinical study design and analysis. Arlington, VA: AAPS Press. pp. 237–239. ISBN   9780971176744.
  40. Toutain, P. L.; Bousquet-Melou, A. (2004). "Plasma terminal half-life". Journal of Veterinary Pharmacology and Therapeutics. 27 (6): 427–439. doi:10.1111/j.1365-2885.2004.00600.x. ISSN   0140-7783. PMID   15601438.
  41. Younggil Kwon (8 May 2007). Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists. Springer Science & Business Media. pp. 24–. ISBN   978-0-306-46820-9.