Minimum inhibitory concentration

Last updated

In microbiology, the minimum inhibitory concentration (MIC) is the lowest concentration of a chemical, usually a drug, which prevents visible in vitro growth of bacteria or fungi. [1] [2] MIC testing is performed in both diagnostic [1] [2] and drug discovery laboratories. [3] [4]

Contents

The MIC is determined by preparing a dilution series of the chemical, adding agar or broth, then inoculating with bacteria or fungi, and incubating at a suitable temperature. The value obtained is largely dependent on the susceptibility of the microorganism and the antimicrobial potency of the chemical, but other variables can affect results too. [5] The MIC is often expressed in micrograms per milliliter (μg/mL) or milligrams per liter (mg/L).

In diagnostic labs, MIC test results are used to grade the susceptibility of microbes. These grades are assigned based on agreed upon values called breakpoints. Breakpoints are published by standards development organizations such as the U.S. Clinical and Laboratory Standards Institute (CLSI), the British Society for Antimicrobial Chemotherapy (BSAC) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). [6] [7] [8] The purpose of measuring MICs and grading microbes is to enable physicians to prescribe the most appropriate antimicrobial treatment.

The first step in drug discovery is often measurement of the MICs of biological extracts, isolated compounds or large chemical libraries against bacteria and fungi of interest. [9] [10] MIC values provide a quantitative measure of an extract or compound’s antimicrobial potency. The lower the MIC, the more potent the antimicrobial. [4] When in vitro toxicity data is available, MICs can also be used to calculate selectivity index values, a measure of off-target to target toxicity. [4]

History

After the discovery and commercialization of antibiotics, microbiologist, pharmacologist, and physician Alexander Fleming developed the broth dilution technique using the turbidity of the broth for assessment. [11] This is commonly believed to be the conception point of minimum inhibitory concentrations. [12] Later in the 1980s, the Clinical and Laboratory Standards Institute consolidated the methods and standards for MIC determination and clinical usage. Because pathogens continue to evolve, and new drugs continue to be developed, the CLSI’s MIC protocols are periodically updated to reflect these changes. [13] The protocols and parameters set by the CLSI are considered to be the "gold standard" in the United States and are used by regulatory authorities, such as the FDA, to make evaluations. [14]

Clinical usage

Nowadays, the MIC is used in antimicrobial susceptibility testing. The MIC is reported by providing the susceptibility interpretation next to each antibiotic. The different susceptibility interpretations are: "S" (susceptible or responding to a standard dosing regimen), "I" (intermediate or requiring increased exposure), and "R" (resistant). These interpretations were developed by the CLSI and EUCAST. [6] [8] There have been major discrepancies between the breakpoints from various European countries over the years, and between those from the CLSI and EUCAST. [15]

In clinics, more often than not, exact pathogens cannot be easily determined by symptoms of the patient. Then, even if the pathogen is determined, different strains of pathogens, such as Staphylococcus aureus, have varying levels of resistance to antimicrobials. As such, it is difficult to prescribe correct antimicrobials. [16] The MIC is determined in such cases by growing the pathogen isolate from the patient on plate or broth, which is later used in the assay. [17] Thus, knowledge of the MIC will provide a physician valuable information for making a prescription.

Accurate and precise usage of antimicrobials is also important in the context of multidrug-resistant bacteria. Microbes such as bacteria have been gaining resistance to antimicrobials they were previously susceptible to. [18] Usage of incompatible levels of antimicrobials provides the selective pressure that has driven the direction and evolution of resistance of bacterial pathogens. [19] This has been seen at sub-MIC levels of antibiotics. [20] As such, it is increasingly important to determine the MIC in order to make the best choice in prescribing antimicrobials.

Methods

Broth dilution assay

Broth dilution assay. The MIC is determined by examining tubes containing the microbe and a dilution series of antimicrobial agent for turbidity. Minimum Inhibitory Concentration.jpg
Broth dilution assay. The MIC is determined by examining tubes containing the microbe and a dilution series of antimicrobial agent for turbidity.

There are three main reagents necessary to run this assay: the media, an antimicrobial agent, and the microbe being tested. The most commonly used media is cation-adjusted Mueller Hinton Broth, due to its ability to support the growth of most pathogens and its lack of inhibitors towards common antibiotics. [21] Depending on the pathogen and antibiotics being tested, the media can be changed and/or adjusted. The antimicrobial concentration is adjusted into the correct concentration by mixing stock antimicrobial with media. The adjusted antimicrobial is serially diluted into multiple tubes (or wells) to obtain a gradient. The dilution rate can be adjusted depending on the breakpoint and the practitioner's needs. The microbe, or the inoculating agent, must come from the same colony-forming unit, and must be at the correct concentration. This may be adjusted by incubation time and dilution. For verification, the positive control is plated in a hundred fold dilution to count colony forming units. The microbes inoculate the tubes (or plate) and are incubated for 16–20 hours. The MIC is generally determined by turbidity. [21]

Etest

Etest. After the required incubation period, when an even lawn of growth is distinctly visible, the MIC value is read where the pointed end of the inhibition ellipse intersects the side of the strip. Etest Vancomycin S aureus.jpg
Etest. After the required incubation period, when an even lawn of growth is distinctly visible, the MIC value is read where the pointed end of the inhibition ellipse intersects the side of the strip.

Etests can be used as an alternative method to determine the minimum inhibitory concentrations of a wide range of antimicrobial agents against different organisms. They have been widely used in microbiology laboratories around the world. Manufactured by bioMérieux, Etests are a ready-to-use, non-porous plastic reagent strip with a predefined gradient of antibiotic, covering a continuous concentration range. [22]

MBC testing

While the MIC is the lowest concentration of an antibacterial or antifungal agent necessary to inhibit visible growth, the minimum bactericidal concentration (MBC) is the minimum concentration of an antibacterial agent that results in bacterial death. It is defined by the inability to re-culture bacteria, and the closer the MIC is to the MBC, the more bactericidal the compound. [23]

MIC is used clinically over MBC because MIC is more easily determined. [13] In addition, drug effectiveness is generally similar when taken at both MIC and MBC concentrations because the host immune system can expel the pathogen when bacterial proliferation is at a standstill. [24] When the MBC is much higher than the MIC, drug toxicity makes taking the MBC of the drug detrimental to patient. Antimicrobial toxicity can come in many forms, such as immune hypersensitivity and off-target toxicity. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Antibiotic</span> Antimicrobial substance active against bacteria

An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the common cold or influenza; drugs which inhibit growth of viruses are termed antiviral drugs or antivirals rather than antibiotics. They are also not effective against fungi; drugs which inhibit growth of fungi are called antifungal drugs.

<span class="mw-page-title-main">Antimicrobial resistance</span> Resistance of microbes to drugs directed against them

Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials. All classes of microbes can evolve resistance where the drugs are no longer effective. Fungi evolve antifungal resistance. Viruses evolve antiviral resistance. Protozoa evolve antiprotozoal resistance, and bacteria evolve antibiotic resistance. Together all of these come under the umbrella of antimicrobial resistance. Microbes resistant to multiple antimicrobials are called multidrug resistant (MDR) and are sometimes referred to as superbugs. Although antimicrobial resistance is a naturally occurring process, it is often the result of improper usage of the drugs and management of the infections.

<span class="mw-page-title-main">McFarland standards</span> Scale for turbidity measurement

In microbiology, McFarland standards are used as a reference to adjust the turbidity of bacterial suspensions so that the number of bacteria will be within a given range to standardize microbial testing. An example of such testing is antibiotic susceptibility testing by measurement of minimum inhibitory concentration which is routinely used in medical microbiology and research. If a suspension used is too heavy or too dilute, an erroneous result for any given antimicrobial agent could occur.

Vancomycin-resistant <i>Staphylococcus aureus</i> Antibiotica resistant bacteria

Vancomycin-resistant Staphylococcus aureus (VRSA) are strains of Staphylococcus aureus that have acquired resistance to the glycopeptide antibiotic vancomycin. Bacteria can acquire resistant genes either by random mutation or through the transfer of DNA from one bacterium to another. Resistance genes interfere with the normal antibiotic function and allow a bacteria to grow in the presence of the antibiotic. Resistance in VRSA is conferred by the plasmid-mediated vanA gene and operon. Although VRSA infections are uncommon, VRSA is often resistant to other types of antibiotics and a potential threat to public health because treatment options are limited. VRSA is resistant to many of the standard drugs used to treat S. aureus infections. Furthermore, resistance can be transferred from one bacterium to another.

<span class="mw-page-title-main">Blood culture</span> Test to detect bloodstream infections

A blood culture is a medical laboratory test used to detect bacteria or fungi in a person's blood. Under normal conditions, the blood does not contain microorganisms: their presence can indicate a bloodstream infection such as bacteremia or fungemia, which in severe cases may result in sepsis. By culturing the blood, microbes can be identified and tested for resistance to antimicrobial drugs, which allows clinicians to provide an effective treatment.

<span class="mw-page-title-main">Piperacillin</span> Antibiotic medication

Piperacillin is a broad-spectrum β-lactam antibiotic of the ureidopenicillin class. The chemical structure of piperacillin and other ureidopenicillins incorporates a polar side chain that enhances penetration into Gram-negative bacteria and reduces susceptibility to cleavage by Gram-negative beta lactamase enzymes. These properties confer activity against the important hospital pathogen Pseudomonas aeruginosa. Thus piperacillin is sometimes referred to as an "anti-pseudomonal penicillin".

Vancomycin-resistant <i>Enterococcus</i> Bacterial strains of Enterococcus that are resistant to the antibiotic vancomycin

Vancomycin-resistant Enterococcus, or vancomycin-resistant enterococci (VRE), are bacterial strains of the genus Enterococcus that are resistant to the antibiotic vancomycin.

<span class="mw-page-title-main">Antibiotic sensitivity testing</span> Microbiology test used in medicine

Antibiotic sensitivity testing or antibiotic susceptibility testing is the measurement of the susceptibility of bacteria to antibiotics. It is used because bacteria may have resistance to some antibiotics. Sensitivity testing results can allow a clinician to change the choice of antibiotics from empiric therapy, which is when an antibiotic is selected based on clinical suspicion about the site of an infection and common causative bacteria, to directed therapy, in which the choice of antibiotic is based on knowledge of the organism and its sensitivities.

Ampicillin/sulbactam is a fixed-dose combination medication of the common penicillin-derived antibiotic ampicillin and sulbactam, an inhibitor of bacterial beta-lactamase. Two different forms of the drug exist. The first, developed in 1987 and marketed in the United States under the brand name Unasyn, generic only outside the United States, is an intravenous antibiotic. The second, an oral form called sultamicillin, is marketed under the brand name Ampictam outside the United States, and generic only in the United States. Ampicillin/sulbactam is used to treat infections caused by bacteria resistant to beta-lactam antibiotics. Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the bacteria.

<span class="mw-page-title-main">Disk diffusion test</span> Microbiology assay used in diagnostic and drug discovery laboratories

The disk diffusion test is a culture-based microbiology assay used in diagnostic and drug discovery laboratories. In diagnostic labs, the assay is used to determine the susceptibility of bacteria isolated from a patient's infection to clinically approved antibiotics. This allows physicians to prescribe the most appropriate antibiotic treatment. In drug discovery labs, especially bioprospecting labs, the assay is used to screen biological material and drug candidates for antibacterial activity. When bioprospecting, the assay can be performed with paired strains of bacteria to achieve dereplication and provisionally identify antibacterial mechanism of action.

<span class="mw-page-title-main">Medical microbiology</span> Branch of medical science

Medical microbiology, the large subset of microbiology that is applied to medicine, is a branch of medical science concerned with the prevention, diagnosis and treatment of infectious diseases. In addition, this field of science studies various clinical applications of microbes for the improvement of health. There are four kinds of microorganisms that cause infectious disease: bacteria, fungi, parasites and viruses, and one type of infectious protein called prion.

The minimum bactericidal concentration (MBC) is the lowest concentration of an antibacterial agent required to kill a particular bacterium. It can be determined from broth dilution minimum inhibitory concentration (MIC) tests by subculturing to agar plates that do not contain the test agent. The MBC is identified by determining the lowest concentration of antibacterial agent that reduces the viability of the initial bacterial inoculum by ≥99.9%. The MBC is complementary to the MIC; whereas the MIC test demonstrates the lowest level of antimicrobial agent that inhibits growth, the MBC demonstrates the lowest level of antimicrobial agent that results in microbial death. This means that even if a particular MIC shows inhibition, plating the bacteria onto agar might still result in organism proliferation because the antimicrobial did not cause death. Antibacterial agents are usually regarded as bactericidal if the MBC is no more than four times the MIC. Because the MBC test uses colony-forming units as a proxy measure of bacterial viability, it can be confounded by antibacterial agents which cause aggregation of bacterial cells. Examples of antibacterial agents which do this include flavonoids and peptides.

<span class="mw-page-title-main">Cefoxitin</span> Chemical compound

Cefoxitin is a second-generation cephamycin antibiotic developed by Merck & Co., Inc. from Cephamycin C in the year following its discovery, 1972. It was synthesized in order to create an antibiotic with a broader spectrum. It is often grouped with the second-generation cephalosporins. Cefoxitin requires a prescription and as of 2010 is sold under the brand name Mefoxin by Bioniche Pharma, LLC. The generic version of cefoxitin is known as cefoxitin sodium.

<span class="mw-page-title-main">Etest</span>

Etest is a way of determining antimicrobial sensitivity by placing a strip impregnated with antimicrobials onto an agar plate. A strain of bacterium or fungus will not grow near a concentration of antibiotic or antifungal if it is sensitive. For some microbial and antimicrobial combinations, the results can be used to determine a minimum inhibitory concentration (MIC). Etest is a proprietary system manufactured by bioMérieux. It is a laboratory test used in healthcare settings to help guide physicians by indicating what concentration of antimicrobial could successfully be used to treat patients' infections.

Brachyspira is a genus of bacteria classified within the phylum Spirochaetota.

Agar dilution is one of two methods used by researchers to determine the Minimum Inhibitory Concentration (MIC) of antibiotics. It is the dilution method most frequently used to test the effectiveness of new antibiotics when a few antibiotics are tested against a large panel of different bacteria.

<span class="mw-page-title-main">Streptomyces sp. myrophorea</span> Species of bacterium

Streptomyces sp. myrophorea, isolate McG1 is a species of Streptomyces, that originates from a (ethnopharmacology) folk cure in the townland of Toneel North in Boho, County Fermanagh. This area was previously occupied by the Druids and before this neolithic people who engraved the nearby Reyfad stones. Streptomyces sp. myrophorea is inhibitory to many species of ESKAPE pathogens, can grow at high pH (10.5) and can tolerate relatively high levels of radioactivity.

European Committee on Antimicrobial Susceptibility Testing (EUCAST) is a scientific committee for defining guidelines to interpret antimicrobial resistance. It was formed in 1997 and is jointly organized by ESCMID, ECDC and other European laboratories.

EARS-Net otherwise known as European Antimicrobial Resistance Surveillance Network is a central and comprehensive database for the European Union that focuses on eight different bacterial pathogens.

Imipenem/cilastatin/relebactam, sold under the brand name Recarbrio, is a fixed-dose combination medication used as an antibiotic. In 2019, it was approved for use in the United States for the treatment of complicated urinary tract and complicated intra-abdominal infections. It is administered via intravenous injection.

References

  1. 1 2 Magréault S, Jauréguy F, Carbonnelle E, Zahar JR (December 2010). "When and How to Use MIC in Clinical Practice?". Antibiotics. 11 (12): Article 1748. doi: 10.3390/antibiotics11121748 . PMC   9774413 . PMID   36551405.
  2. 1 2 Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D (December 2010). "Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: Time for harmonization of CLSI and EUCAST broth microdilution methods". Drug Resistance Updates. 13 (6): 180–195. doi:10.1016/j.drup.2010.09.002. PMID   21050800.
  3. Bennani FE, Doudach L, El Rhayam Y, Karrouchi K, Cherrah Y, Tarib A, Ansar M, Faouzi ME (November 2022). "Identification of the new progress on pyrazole derivatives molecules as antimicrobial and antifungal agents". West African Journal of Medicine. 39 (11): 1217–1244. PMID   36455285.
  4. 1 2 3 Cushnie TP, Cushnie B, Echeverría J, Fowsantear W, Thammawat S, Dodgson JL, Law S, Clow SM (June 2020). "Bioprospecting for antibacterial drugs: a multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls". Pharmaceutical Research. 37 (7): Article 125. doi:10.1007/s11095-020-02849-1. PMID   32529587. S2CID   254932190.
  5. McKinnon PS, Davis SL (April 2004). "Pharmacokinetic and pharmacodynamic issues in the treatment of bacterial infectious diseases". European Journal of Clinical Microbiology & Infectious Diseases. 23 (4): 271–88. doi:10.1007/s10096-004-1107-7. PMID   15015030. S2CID   28455936.
  6. 1 2 Humphries R, Bobenchik AM, Hindler JA, Schuetz AN (November 2021). "Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition". J Clin Microbiol. 59 (12): Article e0021321. doi:10.1128/JCM.00213-21. PMID   34550809.
  7. Andrews JM (July 2001). "Determination of minimum inhibitory concentrations". The Journal of Antimicrobial Chemotherapy. 48 Suppl 1 (suppl 1): 5–16. doi: 10.1093/jac/48.suppl_1.5 . PMID   11420333.
  8. 1 2 "New definitions of S, I and R from 2019". European Committee on Antimicrobial Susceptibility Testing (EUCAST). Retrieved 5 May 2023.
  9. Turnidge JD, Ferraro MJ, Jorgensen JH (2003). "Susceptibility Test Methods: General Considerations". In Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (eds.). Manual of Clinical Microbiology (8th ed.). Washington: American Society of Clinical Microbiology. p. 1103. ISBN   1-55581-255-4.
  10. O'Neill AJ, Chopra I (August 2004). "Preclinical evaluation of novel antibacterial agents by microbiological and molecular techniques". Expert Opinion on Investigational Drugs. 13 (8): 1045–63. doi:10.1517/13543784.13.8.1045. PMID   15268641. S2CID   24016698.
  11. Fleming A (1944). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. H. K. Lewis & Co. Ltd. OCLC   25424051.
  12. Wheat PF (July 2001). "History and development of antimicrobial susceptibility testing methodology". The Journal of Antimicrobial Chemotherapy. 48 Suppl 1 (suppl_1): 1–4. doi: 10.1093/jac/48.suppl_1.1 . PMID   11420332.
  13. 1 2 Cockerill FR (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard (9th ed.). Wayne, Pa: Clinical and Laboratory Standards Institute. ISBN   978-1562387846. OCLC   1016466655.
  14. Cockerill F (2012). Performance standards for antimicrobial susceptibility testing: twenty-second informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute. ISBN   978-1562387853. OCLC   795927370.
  15. Diene SM, Abat C, Rolain JM, Raoult D (July 2017). "How artificial is the antibiotic resistance definition?". The Lancet Infectious Diseases. 17 (7): 690. doi: 10.1016/S1473-3099(17)30338-9 . PMID   28653629.
  16. Cameron DR, Howden BP, Peleg AY (September 2011). "The interface between antibiotic resistance and virulence in Staphylococcus aureus and its impact upon clinical outcomes". Clinical Infectious Diseases. 53 (6): 576–82. doi: 10.1093/cid/cir473 . PMID   21865195.
  17. Schwalbe R, Steele-Moore L, Goodwin AC (2007). Antimicrobial susceptibility testing protocols. Boca Raton: CRC Press. ISBN   9781420014495. OCLC   666899344.
  18. World Health Organization (2015-12-15). Global antimicrobial resistance surveillance system: manual for early implementation. World Health Organization. Geneva, Switzerland. ISBN   978-9241549400. OCLC   950637154.{{cite book}}: CS1 maint: location missing publisher (link)
  19. Geisinger E, Isberg RR (February 2017). "Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria". The Journal of Infectious Diseases. 215 (suppl_1): S9–S17. doi:10.1093/infdis/jiw402. PMC   5853982 . PMID   28375515.
  20. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (July 2011). "Selection of resistant bacteria at very low antibiotic concentrations". PLOS Pathogens. 7 (7): e1002158. doi: 10.1371/journal.ppat.1002158 . PMC   3141051 . PMID   21811410.
  21. 1 2 Cockerill F (2015). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard (Tenth ed.). Wayne, Pa.: Clinical and Laboratory Standards Institute. ISBN   978-1562387839. OCLC   932608948.
  22. "ETEST". bioMérieux. Retrieved 2019-04-23.
  23. Tripathi KD (2013). Essentials of Medical Pharmacology (7th ed.). New Delhi, India: Jaypee Brothers Medical Publishers. pp. 696, 697. ISBN   9789350259375.
  24. Gallagher JC (2016-11-21). Antibiotics simplified. Jones & Bartlett Publishers. ISBN   9781284111293. OCLC   952657550.
  25. Guengerich FP (2011). "Mechanisms of drug toxicity and relevance to pharmaceutical development". Drug Metabolism and Pharmacokinetics. 26 (1): 3–14. doi:10.2133/dmpk.DMPK-10-RV-062. PMC   4707670 . PMID   20978361.