Clinical data | |
---|---|
Trade names | Seromycin |
Other names | D-cycloserine, 4-amino-3-isoxazolidinone |
AHFS/Drugs.com | Monograph |
License data | |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | ~70% to 90% |
Metabolism | Liver |
Elimination half-life | 10 hrs (normal kidney function) |
Excretion | Kidney |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
NIAID ChemDB | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.000.626 |
Chemical and physical data | |
Formula | C3H6N2O2 |
Molar mass | 102.093 g·mol−1 |
3D model (JSmol) | |
Melting point | 155 to 156 °C (311 to 313 °F) (dec.) |
| |
| |
(verify) |
Cycloserine, sold under the brand name Seromycin, is a GABA transaminase inhibitor and an antibiotic, used to treat tuberculosis. [1] [2] Specifically it is used, along with other antituberculosis medications, for active drug resistant tuberculosis. [2] It is given by mouth. [2]
Common side effects include allergic reactions, seizures, sleepiness, unsteadiness, and numbness. [2] It is not recommended in people who have kidney failure, epilepsy, depression, or are alcoholics. [2] It is unclear if use during pregnancy is safe for the baby. [2] Cycloserine is similar in structure to the amino acid D-alanine and works by interfering with the formation of the bacteria's cell wall. [2]
Cycloserine was discovered in 1954 from a type of Streptomyces . [3] It is on the World Health Organization's List of Essential Medicines. [4]
For the treatment of tuberculosis, cycloserine is classified as a second-line drug. Its use is only considered if one or more first-line drugs cannot be used. Hence, cycloserine is restricted for use only against multiple drug-resistant and extensively drug-resistant strains of M. tuberculosis. Another reason for limited use of this drug is the neurological side effects it causes, since it is able to penetrate into the central nervous system (CNS) and cause headaches, drowsiness, depression, dizziness, vertigo, confusion, paresthesias, dysarthria, hyperirritability, psychosis, convulsions, and shaking (tremors). [5] [6] Overdose of cycloserine may result in paresis, seizures, and coma, while alcohol consumption may increase the risk of seizures. [6] Coadministration of pyridoxine can reduce the incidence of some of these CNS side effects (e.g. convulsions) caused by cycloserine.[ citation needed ]
A 2015 Cochrane review found no evidence of benefit in anxiety disorders as of 2015. [7] Another review found preliminary evidence of benefit. [8] Evidence for use in addiction is tentative but also unclear. [9]
Cycloserine works as an antibiotic by inhibiting cell-wall biosynthesis in bacteria. [10] [11] As a cyclic analogue of D-alanine, cycloserine acts against two crucial enzymes important in the cytosolic stages of peptidoglycan synthesis: alanine racemase (Alr) and D-alanine:D-alanine ligase (Ddl). [11] The first enzyme is a pyridoxal 5'-phosphate-dependent enzyme which converts the L-alanine to the D-alanine form. [11] The second enzyme is involved in joining two of these D-alanine residues together by catalyzing the formation of the ATP-dependent D-alanine-D-alanine dipeptide bond between the resulting D-alanine molecules. [11] If both of these enzymes are inhibited, then D-alanine residues cannot form and previously formed D-alanine molecules cannot be joined. [11] This effectively leads to inhibition of peptidoglycan synthesis. [11]
Psychiatric use is suggested based on partial NMDA receptor agonism, which improves neural plasticity in lab animals. The degree of clinical usefulness is, as aforementioned, unclear and still being explored, as of 2016. [8]
Under mildly acidic conditions, cycloserine hydrolyzes to give hydroxylamine and D-serine. [12] [13] Cycloserine can be conceptualized as a cyclized version of serine, with an oxidative loss of dihydrogen to form the nitrogen-oxygen bond.[ citation needed ]
Cycloserine is stable under basic conditions, with the greatest stability at pH = 11.5. [12]
Initial approaches to synthesize the compound was first published in 1955, when the Stammer group produced a racemic synthesis from DL‐β‐aminoxyalanine ethyl ester. In 1957, Platter et al. managed to synthesis the pure D-enantiomer by cyclizing the corresponding α‐amino‐β‐chlorohydroxamic acids. Chemical synthesis of the compound was revolutionized in the 2010s, when several approaches starting with the cheap D-serine (mirror form of normal L-serine) were published by different groups. [14]
The biosynthesis of the compound is defined by a ten-gene cluster. L-serine and L-arginine are converted to O-ureido-L-serine, flipped to O-ureido-D-serine, then turned into the final compound by cyclization. In 2013, Uda et al. successfully used recombinant versions of three enzymes in the cluster to produce the compound. [15]
A 1963 patent describes industrial production of the drug by bacterial fermentation. [16] It is unclear what process is used in the 21st century, fermentation, or chemical synthesis.[ citation needed ]
The compound was first isolated nearly simultaneously by two teams. Workers at Merck isolated the compound, which they called oxamycin, from a species of Streptomyces. [17] The same team prepared the molecule synthetically. [18] Workers at Eli Lilly isolated the compound from strains of Streptomyces orchidaceus. It was shown to hydrolyze to serine and hydroxylamine. [19]
In the U.S., the price of cycloserine increased from $500 for 30 pills to $10,800 in 2015 after the Chao Center for Industrial Pharmacy and Contract Manufacturing changed ownership to Rodelis Therapeutics in August 2015. [20]
The price increase was rescinded after the previous owner, the Purdue University Research Foundation, which retained "oversight of the manufacturing operation" intervened and Rodelis returned the drug to an NGO of Purdue University. The foundation now will charge $1,050 for 30 capsules, twice what it charged before". Eli Lilly has been criticised for not ensuring that the philanthropic initiative continued. Due to US antitrust laws, however, no company may control the price of a product after it is outlicensed. [21]
In 2015, the cost in the United States was increased to US$3,150 a month and then decreased to US$1,050 per month. [21]
Reviews in 2016-17 found that cycloserine produced a small improvement in cognitive behavioral therapy for anxiety, obsessive-compulsive disorder, and post-traumatic stress disorder, [22] and had potential for use as a therapy in psychiatric diseases. [8]
Neomycin is an aminoglycoside antibiotic that displays bactericidal activity against Gram-negative aerobic bacilli and some anaerobic bacilli where resistance has not yet arisen. It is generally not effective against Gram-positive bacilli and anaerobic Gram-negative bacilli. Neomycin comes in oral and topical formulations, including creams, ointments, and eyedrops. Neomycin belongs to the aminoglycoside class of antibiotics that contain two or more amino sugars connected by glycosidic bonds.
Pyridoxal phosphate (PLP, pyridoxal 5'-phosphate, P5P), the active form of vitamin B6, is a coenzyme in a variety of enzymatic reactions. The International Union of Biochemistry and Molecular Biology has catalogued more than 140 PLP-dependent activities, corresponding to ~4% of all classified activities. The versatility of PLP arises from its ability to covalently bind the substrate, and then to act as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates.
The rifamycins are a group of antibiotics that are synthesized either naturally by the bacterium Amycolatopsis rifamycinica or artificially. They are a subclass of the larger family of ansamycins. Rifamycins are particularly effective against mycobacteria, and are therefore used to treat tuberculosis, leprosy, and mycobacterium avium complex (MAC) infections.
Rifampicin, also known as rifampin, is an ansamycin antibiotic used to treat several types of bacterial infections, including tuberculosis (TB), Mycobacterium avium complex, leprosy, and Legionnaires' disease. It is almost always used together with other antibiotics with two notable exceptions: when given as a "preferred treatment that is strongly recommended" for latent TB infection; and when used as post-exposure prophylaxis to prevent Haemophilus influenzae type b and meningococcal disease in people who have been exposed to those bacteria. Before treating a person for a long period of time, measurements of liver enzymes and blood counts are recommended. Rifampicin may be given either by mouth or intravenously.
DD-Transpeptidase is a bacterial enzyme that catalyzes the transfer of the R-L-αα-D-alanyl moiety of R-L-αα-D-alanyl-D-alanine carbonyl donors to the γ-OH of their active-site serine and from this to a final acceptor. It is involved in bacterial cell wall biosynthesis, namely, the transpeptidation that crosslinks the peptide side chains of peptidoglycan strands.
A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synthesis and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets. The term natural product has also been extended for commercial purposes to refer to cosmetics, dietary supplements, and foods produced from natural sources without added artificial ingredients.
Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins.
Daptomycin, sold under the brand name Cubicin among others, is a lipopeptide antibiotic used in the treatment of systemic and life-threatening infections caused by Gram-positive organisms.
Kanamycin A, often referred to simply as kanamycin, is an antibiotic used to treat severe bacterial infections and tuberculosis. It is not a first line treatment. It is used by mouth, injection into a vein, or injection into a muscle. Kanamycin is recommended for short-term use only, usually from 7 to 10 days. Since antibiotics only show activity against bacteria, it is ineffective in viral infections.
Viomycin is a member of the tuberactinomycin family, a group of nonribosomal peptide antibiotics exhibiting anti-tuberculosis activity. The tuberactinomycin family is an essential component in the drug cocktail currently used to fight infections of Mycobacterium tuberculosis. Viomycin was the first member of the tuberactinomycins to be isolated and identified, and was used to treat TB until it was replaced by the less toxic, but structurally related compound, capreomycin. The tuberactinomycins target bacterial ribosomes, binding RNA and disrupting bacterial protein synthesis and certain forms of RNA splicing. Viomycin is produced by the actinomycete Streptomyces puniceus.
The mitomycins are a family of aziridine-containing natural products isolated from Streptomyces caespitosus or Streptomyces lavendulae. They include mitomycin A, mitomycin B, and mitomycin C. When the name mitomycin occurs alone, it usually refers to mitomycin C, its international nonproprietary name. Mitomycin C is used as a medicine for treating various disorders associated with the growth and spread of cells.
Penicillin-binding proteins (PBPs) are a group of proteins that are characterized by their affinity for and binding of penicillin. They are a normal constituent of many bacteria; the name just reflects the way by which the protein was discovered. All β-lactam antibiotics bind to PBPs, which are essential for bacterial cell wall synthesis. PBPs are members of a subgroup of transpeptidase enzymes called DD-transpeptidases.
Tyrocidine is a mixture of cyclic decapeptides produced by the bacteria Brevibacillus brevis found in soil. It can be composed of 4 different amino acid sequences, giving tyrocidine A–D. Tyrocidine is the major constituent of tyrothricin, which also contains gramicidin. Tyrocidine was the first commercially available antibiotic, but has been found to be toxic toward human blood and reproductive cells. The function of tyrocidine within its host B. brevis is thought to be regulation of sporulation.
D-amino acid oxidase is an enzyme with the function on a molecular level to oxidize D-amino acids to the corresponding α-keto acids, producing ammonia and hydrogen peroxide. This results in a number of physiological effects in various systems, most notably the brain. The enzyme is most active toward neutral D-amino acids, and not active toward acidic D-amino acids. One of its most important targets in mammals is D-Serine in the central nervous system. By targeting this and other D-amino acids in vertebrates, DAAO is important in detoxification. The role in microorganisms is slightly different, breaking down D-amino acids to generate energy.
D-amino-acid dehydrogenase is a bacterial enzyme that catalyses the oxidation of D-amino acids into their corresponding oxoacids. It contains both flavin and nonheme iron as cofactors. The enzyme has a very broad specificity and can act on most D-amino acids.
In enzymology, a D-alanine—D-alanine ligase is an enzyme that catalyzes the chemical reaction
Sparsomycin is a compound, initially discovered as a metabolite of the bacterium Streptomyces sparsogenes, which binds to the 50S ribosomal subunit and inhibits protein synthesis through peptidyl transferase inhibition. As it binds to the 50S ribosomal subunit, it induces translocation on the 30S subunit. It is a nucleotide analogue. It was also formerly thought to be a possible anti-tumor agent, but interest in this drug was later discarded after it was discovered that it resulted in retinopathy and as a tool to study protein synthesis; it is not specific for bacterial ribosomes and so not usable as an antibiotic.
In biochemistry, non-coded or non-proteinogenic amino acids are distinct from the 22 proteinogenic amino acids, which are naturally encoded in the genome of organisms for the assembly of proteins. However, over 140 non-proteinogenic amino acids occur naturally in proteins and thousands more may occur in nature or be synthesized in the laboratory. Chemically synthesized amino acids can be called unnatural amino acids. Unnatural amino acids can be synthetically prepared from their native analogs via modifications such as amine alkylation, side chain substitution, structural bond extension cyclization, and isosteric replacements within the amino acid backbone. Many non-proteinogenic amino acids are important:
Nosiheptide is a thiopeptide antibiotic produced by the bacterium Streptomyces actuosus.
Chloroalanine (3-chloroalanine) is an unnatural amino acid with the formula ClCH2CH(NH2)CO2H. It is a white, water-soluble solid. The compound is usually derived from chlorination of serine. The compound is used in the synthesis of other amino acids by replacement of the chloride. Protected forms of the related iodoalanine are also known.