Clinical data | |
---|---|
Other names | 2,4-dichloro- 6-(3,5-dichloro- 2-hydroxyphenyl)sulfanylphenol |
ATC code | |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
IUPHAR/BPS | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.002.333 |
Chemical and physical data | |
Formula | C12H6Cl4O2S |
Molar mass | 356.04 g·mol−1 |
3D model (JSmol) | |
Melting point | 188 °C (370 °F) |
| |
| |
(what is this?) (verify) |
Bithionol is an antibacterial, anthelmintic, and algaecide. It is used to treat Anoplocephala perfoliata (tapeworms) in horses [1] and Fasciola hepatica (liver flukes).
Bithionol has been shown to be a potent inhibitor of soluble adenylyl cyclase, [2] an intracellular enzyme important in the catalysis of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). Soluble adenylyl cyclase is uniquely activated by bicarbonate. The cAMP formed by this enzyme is associated with capacitation of sperm, eye pressure regulation, acid-base regulation, and astrocyte/neuron communication.[ citation needed ]
It is related to the organochlorine hexachlorophene, which has been shown to be an isomer-specific inhibitor of soluble adenylyl cyclase. Bithionol has two aromatic rings with a sulfur atom bonded between them and multiple chlorine ions and hydroxyl groups attached to the phenyl groups. These functional groups are capable of hydrophobic, ionic, and polar interactions.[ citation needed ]
These intermolecular interactions are responsible for the binding of bithionol to the bicarbonate binding site of soluble adenylyl cyclase efficiently enough to cause competitive inhibition with the usual bicarbonate substrate. The side chain of arginine 176 within the bicarbonate binding site interacts significantly with the aromatic ring of the bithionol molecule. This allosteric, conformational change interferes with the ability of the active site of soluble adenylyl cyclase to adequately bind ATP to convert it into cAMP. Arginine 176 usually interacts with the ATP and other catalytic ions at the active site, so when it turns from its normal position to interact with the bithionol inhibitor, it no longer functions in keeping the ATP bound to the active site.[ citation needed ]
In another form of inhibition, bithionol is a much larger molecule than simple sodium bicarbonate, so it is large enough to reach through a small channel in the soluble adenylyl cyclase and interfere with binding of ATP, preventing its conversion to cAMP.[ citation needed ]
This inhibition of the soluble adenylyl cyclase by bithionol at the bicarbonate binding site is demonstrated through a mixed-inhibition graph, where higher concentrations of bithionol have a lower Vmax and a larger Km. This translates to a decreased rate of reaction and a decreased affinity between substrates when bithionol is in higher concentrations.[ citation needed ]
However, concentrations of bithionol that are required inhibit soluble adenylyl cyclase at clinically relevant levels are also cytotoxic in vivo. Thus, it cannot be used as the therapeutic drug needed to inhibit soluble adenylyl cyclase and therefore decrease the accumulation of cAMP within the cell. However, it sheds light on the search for a compound that will eventually be able to target the bicarbonate binding site of soluble adenylyl cyclase. Bithionol is the first known soluble adenylyl cyclase inhibitor to act through the bicarbonate binding site via a mostly allosteric mechanism.[ citation needed ]
LD50 (oral, mouse) is 2100 mg/kg. [3]
Bithionol was formerly used in soaps and cosmetics until the U.S. FDA banned it for its photosensitizing effects. The compound has been known to cause photocontact sensitization. [4]
Adenosine triphosphate (ATP) is a nucleotide that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts either to adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP. It is also a precursor to DNA and RNA, and is used as a coenzyme. A human adult processes around 50 kg of ATP daily.
Adenylate cyclase is an enzyme with systematic name ATP diphosphate-lyase . It catalyzes the following reaction:
Cyclic adenosine monophosphate is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms, conveying the cAMP-dependent pathway.
Adenosine monophosphate (AMP), also known as 5'-adenylic acid, is a nucleotide. AMP consists of a phosphate group, the sugar ribose, and the nucleobase adenine. It is an ester of phosphoric acid and the nucleoside adenosine. As a substituent it takes the form of the prefix adenylyl-.
A cyclic nucleotide (cNMP) is a single-phosphate nucleotide with a cyclic bond arrangement between the sugar and phosphate groups. Like other nucleotides, cyclic nucleotides are composed of three functional groups: a sugar, a nitrogenous base, and a single phosphate group. As can be seen in the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) images, the 'cyclic' portion consists of two bonds between the phosphate group and the 3' and 5' hydroxyl groups of the sugar, very often a ribose.
Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises the concentration of glucose and fatty acids in the bloodstream and is considered to be the main catabolic hormone of the body. It is also used as a medication to treat a number of health conditions. Its effect is opposite to that of insulin, which lowers extracellular glucose. It is produced from proglucagon, encoded by the GCG gene.
In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase. PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. It should not be confused with 5'-AMP-activated protein kinase.
Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes of glycolysis. It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors. PFK-1 catalyzes the important "committed" step of glycolysis, the conversion of fructose 6-phosphate and ATP to fructose 1,6-bisphosphate and ADP. Glycolysis is the foundation for respiration, both anaerobic and aerobic. Because phosphofructokinase (PFK) catalyzes the ATP-dependent phosphorylation to convert fructose-6-phosphate into fructose 1,6-bisphosphate and ADP, it is one of the key regulatory steps of glycolysis. PFK is able to regulate glycolysis through allosteric inhibition, and in this way, the cell can increase or decrease the rate of glycolysis in response to the cell's energy requirements. For example, a high ratio of ATP to ADP will inhibit PFK and glycolysis. The key difference between the regulation of PFK in eukaryotes and prokaryotes is that in eukaryotes PFK is activated by fructose 2,6-bisphosphate. The purpose of fructose 2,6-bisphosphate is to supersede ATP inhibition, thus allowing eukaryotes to have greater sensitivity to regulation by hormones like glucagon and insulin.
Glycogen phosphorylase is one of the phosphorylase enzymes. Glycogen phosphorylase catalyzes the rate-limiting step in glycogenolysis in animals by releasing glucose-1-phosphate from the terminal alpha-1,4-glycosidic bond. Glycogen phosphorylase is also studied as a model protein regulated by both reversible phosphorylation and allosteric effects.
Cyclic guanosine monophosphate-specific phosphodiesterase type 5 is an enzyme from the phosphodiesterase class. It is found in various tissues, most prominently the corpus cavernosum and the retina. It has also been recently discovered to play a vital role in the cardiovascular system.
Biological crosstalk refers to instances in which one or more components of one signal transduction pathway affects another. This can be achieved through a number of ways with the most common form being crosstalk between proteins of signaling cascades. In these signal transduction pathways, there are often shared components that can interact with either pathway. A more complex instance of crosstalk can be observed with transmembrane crosstalk between the extracellular matrix (ECM) and the cytoskeleton.
Carbamoyl phosphate synthetase I (CPS I) is a ligase enzyme located in the mitochondria involved in the production of urea. Carbamoyl phosphate synthetase I (CPS1 or CPSI) transfers an ammonia molecule to a molecule of bicarbonate that has been phosphorylated by a molecule of ATP. The resulting carbamate is then phosphorylated with another molecule of ATP. The resulting molecule of carbamoyl phosphate leaves the enzyme.
The PDE2 enzyme is one of 21 different phosphodiesterases (PDE) found in mammals. These different PDEs can be subdivided to 11 families. The different PDEs of the same family are functionally related despite the fact that their amino acid sequences show considerable divergence. The PDEs have different substrate specificities. Some are cAMP selective hydrolases, others are cGMP selective hydrolases and the rest can hydrolyse both cAMP and cGMP.
Gi protein alpha subunit is a family of heterotrimeric G protein alpha subunits. This family is also commonly called the Gi/o family or Gi/o/z/t family to include closely related family members. G alpha subunits may be referred to as Gi alpha, Gαi, or Giα.
In the field of molecular biology, the cAMP-dependent pathway, also known as the adenylyl cyclase pathway, is a G protein-coupled receptor-triggered signaling cascade used in cell communication.
Soluble adenylyl cyclase (sAC) is a regulatory cytosolic enzyme present in almost every cell. sAC is a source of cyclic adenosine 3’,5’ monophosphate (cAMP) – a second messenger that mediates cell growth and differentiation in organisms from bacteria to higher eukaryotes. sAC differentiates from the transmembrane adenylyl cyclase (tmACs) – an important source of cAMP; in that sAC is regulated by bicarbonate anions and it is dispersed throughout the cell cytoplasm. sAC has been found to have various functions in physiological systems different from that of the tmACs.
Thromboregulation is the series of mechanisms in how a primary clot is regulated. These mechanisms include, competitive inhibition or negative feedback. It includes primary hemostasis, which is the process of how blood platelets adhere to the endothelium of an injured blood vessel. Platelet aggregation is fundamental to repair vascular damage and the initiation of the blood thrombus formation. The elimination of clots is also part of thromboregulation. Failure in platelet clot regulation may cause hemorrhage or thrombosis. Substances called thromboregulators control every part of these events.
Phosphodiesterases (PDEs) are a superfamily of enzymes. This superfamily is further classified into 11 families, PDE1 - PDE11, on the basis of regulatory properties, amino acid sequences, substrate specificities, pharmacological properties and tissue distribution. Their function is to degrade intracellular second messengers such as cyclic adenine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which leads to several biological processes like effect on intracellular calcium level by the Ca2+ pathway.
Multiplate multiple electrode aggregometry (MEA) is a test of platelet function in whole blood. The test can be used to diagnose platelet disorders, monitor antiplatelet therapy, and is also investigated as a potential predictor of transfusion requirements and bleeding risk in cardiac surgery.
TDI-11861 is a chemical compound which acts as a potent and selective inhibitor of soluble adenylyl cyclase (sAC). In animal studies it reversibly inhibits sperm motility, producing temporary infertility without hormonal side effects. While TDI-11861 is at an early developmental stage and is unlikely to be developed for medical uses in humans itself, it represents an important proof of concept which may potentially lead to the development of future male contraceptive drugs.