Names | |
---|---|
IUPAC name [Cyano-(3-phenoxyphenyl)methyl]3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.052.567 |
KEGG | |
MeSH | Cypermethrin |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C22H19Cl2NO3 | |
Molar mass | 416.30 g/mol |
Pharmacology | |
P03BA02 ( WHO ) QP53AC08 ( WHO ) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
You can help expand this article with text translated from the corresponding article in German. (November 2024)Click [show] for important translation instructions.
|
Cypermethrin (CP) is a synthetic pyrethroid used as an insecticide in large-scale commercial agricultural applications as well as in consumer products for domestic purposes. It behaves as a fast-acting neurotoxin in insects. It is easily degraded on soil and plants but can be effective for weeks when applied to indoor inert surfaces. It is a non-systemic and non-volatile insecticide that acts by contact and ingestion, used in agriculture and in pest control products. Exposure to sunlight, water and oxygen will accelerate its decomposition. Cypermethrin is highly toxic to fish, bees and aquatic insects, according to the National Pesticide Information Center (NPIC) (previously National Pesticides Telecommunication Network) in the USA [1] . It is found in many household ant and cockroach killers, including Raid, Ortho, Combat, ant chalk, and some products of Baygon in Southeast Asia.
Cypermethrin is used in agriculture to control ectoparasites which infest cattle, sheep, and poultry. [2]
Cypermethrin is moderately toxic through skin contact or ingestion. It may cause irritation to the skin and eyes. Symptoms of dermal exposure include numbness, tingling, itching, burning sensation, loss of bladder control, incoordination, seizures and possible death.
Pyrethroids may adversely affect the central nervous system. Human volunteers given dermal doses of 130 μg/cm2 on the earlobe experienced local tingling and burning sensations. One man died after eating a meal cooked in a 10% cypermethrin/oil mix that was mistakenly used for cooking oil. [3] Shortly after the meal, the victim experienced nausea, prolonged vomiting, stomach pains, and diarrhea which progressed to convulsions, unconsciousness and coma. Other family members exhibited milder symptoms and survived after hospital treatment.
It may cause allergic skin reactions in humans. [4] Excessive exposure can cause nausea, headache, muscle weakness, salivation, shortness of breath and seizures.
In humans, cypermethrin is deactivated by enzymatic hydrolysis to several carboxylic acid metabolites, which are eliminated in the urine. Worker exposure to the chemical can be monitored by measurement of the urinary metabolites, while severe overdosage may be confirmed by quantitation of cypermethrin in blood or plasma. [5]
Cypermethrin is very toxic to cats which cannot tolerate the therapeutic doses for dogs. [6] This is associated with UGT1A6 deficiency in cats, the enzyme responsible for metabolizing cypermethrin. As a consequence, cypermethrin remains much longer in the cat's organs than in dogs or other mammals and can be fatal in large doses.
In male rats cypermethrin has been shown to exhibit a toxic effect on the reproductive system by Elbetieha et al. 2001. [7] In another result, after 15 days of continual dosing, both androgen receptor levels and serum testosterone levels were significantly reduced. These data suggested that cypermethrin can induce impairments of the structure of seminiferous tubules and spermatogenesis in male rats at high doses. [8]
Long-term exposure to cypermethrin during adulthood is found to induce dopaminergic neurodegeneration in rats, and postnatal exposure enhances the susceptibility of animals to dopaminergic neurodegeneration if rechallenged during adulthood. [9]
If exposed to cypermethrin during pregnancy, rats give birth to offspring with developmental delays. In male rats exposed to cypermethrin, the proportion of abnormal sperm increases. It causes genetic damage: chromosomal abnormalities increased in bone marrow and spleen cells when mice were exposed to cypermethrin. [10] Cypermethrin is classified as a possible human carcinogen, because it causes an increase in the frequency of lung tumors in female mice. Cypermethrin has been linked to an increase in bone marrow micronuclei in both mice and humans. [11]
One study showed that cypermethrin inhibits “gap junctional intercellular communication”, which plays an important role in cell growth and is inhibited by carcinogenic agents. [12] Studies have shown that residue from cypermethrin can last for 84 days in the air, on walls, the floor and on furniture. [13]
Cypermethrin is a broad-spectrum insecticide, which means it kills beneficial insects as well as the targeted insects. [14] Fish are particularly susceptible to cypermethrin, [15] [16] but when used as directed, application around residential sites poses little risk to aquatic life. [17] Resistance to cypermethrin has developed quickly in insects exposed frequently and can render it ineffective. [18]
Piperonyl butoxide (PBO) is a pale yellow to light brown liquid organic compound used as an adjuvant component of pesticide formulations for synergy. That is, despite having no pesticidal activity of its own, it enhances the potency of certain pesticides such as carbamates, pyrethrins, pyrethroids, and rotenone. It is a semisynthetic derivative of safrole and is produced from the condensation of the sodium salt of 2-(2-butoxyethoxy) ethanol and the chloromethyl derivative of hydrogenated safrole (dihydrosafrole); or through 1,2-Methylenedioxybenzene.
The pyrethrins are a class of organic compounds normally derived from Chrysanthemum cinerariifolium that have potent insecticidal activity by targeting the nervous systems of insects. Pyrethrin naturally occurs in chrysanthemum flowers and is often considered an organic insecticide when it is not combined with piperonyl butoxide or other synthetic adjuvants. Their insecticidal and insect-repellent properties have been known and used for thousands of years.
Bifenthrin is a pyrethroid insecticide. It is widely used against ant infestations.
A pyrethroid is an organic compound similar to the natural pyrethrins, which are produced by the flowers of pyrethrums. Pyrethroids are used as commercial and household insecticides.
Fenvalerate is a synthetic pyrethroid insecticide. It is a mixture of four optical isomers which have different insecticidal activities. The 2-S alpha configuration, known as esfenvalerate, is the most insecticidally active isomer. Fenvalerate consists of about 23% of this isomer.
Permethrin is a medication and an insecticide. As a medication, it is used to treat scabies and lice. It is applied to the skin as a cream or lotion. As an insecticide, it can be sprayed onto outer clothing or mosquito nets to kill the insects that touch them.
Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.
Fenitrothion is a phosphorothioate (organophosphate) insecticide that is inexpensive and widely used worldwide. Trade names include Sumithion, a 94.2% solution of fenitrothion.
The allethrins are a group of related synthetic compounds used in insecticides. They are classified as pyrethroids, i.e. synthetic versions of pyrethrin, a chemical with insecticidal properties found naturally in Chrysanthemum flowers. They were first synthesized in the United States by Milton S. Schechter in 1949. Allethrin was the first pyrethroid.
Deltamethrin is a pyrethroid ester insecticide. Deltamethrin plays a key role in controlling malaria vectors, and is used in the manufacture of long-lasting insecticidal mosquito nets; however, resistance of mosquitos and bed bugs to deltamethrin has seen a widespread increase.
Mirex is an organochloride that was commercialized as an insecticide and later banned because of its impact on the environment. This white crystalline odorless solid is a derivative of both cyclopentadiene and cubane. It was popularized to control fire ants but by virtue of chemical robustness and lipophilicity it was recognized as a bioaccumulative pollutant. The spread of the red imported fire ant was encouraged by the use of mirex, which also kills native ants that are highly competitive with the fire ants. The United States Environmental Protection Agency prohibited its use in 1976. It is prohibited by the Stockholm Convention on Persistent Organic Pollutants.
Monocrotophos is an organophosphate insecticide. It is acutely toxic to birds and humans, so it has been banned in the U.S., the E.U., India and many other countries.
Azinphos-methyl (Guthion) is a broad spectrum organophosphate insecticide manufactured by Bayer CropScience, Gowan Co., and Makhteshim Agan. Like other pesticides in this class, it owes its insecticidal properties to the fact that it is an acetylcholinesterase inhibitor. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act, and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.
Phenothrin, also called sumithrin and d-phenothrin, is a synthetic pyrethroid that kills adult fleas and ticks. It has also been used to kill head lice in humans. d-Phenothrin is used as a component of aerosol insecticides for domestic use. It is often used with methoprene, an insect growth regulator that interrupts the insect's biological lifecycle by killing the eggs.
Cyhalothrin is an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids, such as cyhalothrin, are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.
Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.
Empenthrin (also called vaporthrin) is a synthetic pyrethroid used in insecticides. It is active against broad spectrum of flying insects including moths and other pests damaging textile. It has low acute mammalian toxicity (its oral LD50 is above 5000 mg/kg in male rats, above 3500 mg/kg in female rats and greater than 3500 mg/kg in mice). It is however very toxic to fish and other aquatic organisms (96-hour LC50 in Oncorhynchus mykiss is 1.7 μg/L, 48-hour EC50 in Daphnia magna is 20 μg/L).
Tefluthrin is the ISO common name for an organic compound that is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as tefluthrin are often preferred as active ingredients in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. It is effective against soil pests because it can move as a vapour without irreversibly binding to soil particles: in this respect it differs from most other pyrethroids.
Ethoprophos (or ethoprop) is an organophosphate ester with the formula C8H19O2PS2. It is a clear yellow to colourless liquid that has a characteristic mercaptan-like odour. It is used as an insecticide and nematicide and it is an acetylcholinesterase inhibitor.
Fenpropathrin, or fenopropathrin, is a widely used pyrethroid insecticide in agriculture and household. Fenpropathrin is an ingestion and contact synthetic pyrethroid. Its mode of action is similar to other natural (pyrethrum) and synthetic pyrethroids where in they interfere with the kinetics of voltage gated sodium channels causing paralysis and death of the pest. Fenpropathrin was the first of the light-stable synthetic pyrethroids to be synthesized in 1971, but it was not commercialized until 1980. Like other pyrethroids with an α-cyano group, fenpropathrin also belongs to the termed type II pyrethroids. Type II pyrethroids are a more potent toxicant than type I in depolarizing insect nerves. Application rates of fenpropathrin in agriculture according to US environmental protection agency (EPA) varies by crop but is not to exceed 0.4 lb ai/acre.