Fenthion

Last updated
Fenthion [1]
Fenthion Structural Formulae .V.1.svg
Names
Preferred IUPAC name
O,O-Dimethyl O-[3-methyl-4-(methylsulfanyl)phenyl] phosphorothioate
Other names
• Dimethoxy-[3-methyl-4-(methylthio)phenoxy]-thioxophosphorane
O,O-Dimethyl O-[3-methyl-4-(methylthio)phenyl] phosphorothioate
O,O-Dimethyl O-4-methylthio-m-tolyl phosphorothioate
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.211 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C10H15O3PS2/c1-8-7-9(5-6-10(8)16-4)13-14(15,11-2)12-3/h5-7H,1-4H3 Yes check.svgY
    Key: PNVJTZOFSHSLTO-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C10H15O3PS2/c1-8-7-9(5-6-10(8)16-4)13-14(15,11-2)12-3/h5-7H,1-4H3
    Key: PNVJTZOFSHSLTO-UHFFFAOYAH
  • S=P(OC)(OC)Oc1ccc(SC)c(c1)C
Properties
C10H15O3PS2
Molar mass 278.33 g/mol
Appearancecolorless, almost odorless liquid; 95-98% pure fenthion is a brown oily liquid with a weak garlic odor
Density 1.250 g/cm3 (at 20 °C / 4 °C)
Melting point 7 °C (45 °F; 280 K)
Boiling point 87 °C (189 °F; 360 K) at 0.01 mmHg
54-56 ppm (at 20 °C)
Solubility in glyceride oils, methanol, ethanol, ether, acetone, and most organic solvents, especially chlorinated hydrocarbonssoluble
Vapor pressure 4 • 10−5 mmHg (at 20 °C)
Pharmacology
QP53BB02 ( WHO )
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
none [2]
REL (Recommended)
None established [2]
IDLH (Immediate danger)
N.D. [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class. [1] [3]

Contents

Uses

Fenthion is a contact and stomach insecticide used against many biting insects. It is particularly effective against fruit flies, leaf hoppers, cereal bugs, stem borers, mosquitoes, animal parasites, mites, aphids, codling moths, and weaver birds. It has been widely used in sugar cane, rice, field corn, beets, pome and stone fruit, citrus fruits, pistachio, cotton, olives, coffee, cocoa, vegetables, and vines. [3]

Based on its high toxicity on birds, fenthion has been used to control weaver birds and other pest-birds in many parts of the world. Fenthion is also used in cattle, swine, and dogs to control lice, fleas, ticks, flies, and other external parasites. [3] [4] [5]

Amid concerns of harmful effects on environment, especially birds, Food and Drug Administration no longer approves uses of fenthion. However, fenthion has been extensively used in Florida to control adult mosquitoes. After preliminary risk assessments on human health and environment in 1998 and its revision in 1999, USEPA issued an Interim Reregistration Eligibility Decision (IRED) for fenthion in January 2001. The EPA has classified fenthion as Restricted Use Pesticide (RUP), and warrants special handling because of its toxicity. [6]

Some common trade names for fenthion are Avigel, Avigrease, Entex, Baytex, Baycid, Dalf, DMPT, Mercaptophos, Prentox, Fenthion 4E, Queletox, and Lebaycid. [3] Fenthion is available in dust, emulsifiable concentrate, granular, liquid concentrate, spray concentrate, ULV, and wettable powder formulations.

Synthesis

Fenthion can be synthesized by condensation of 4-methylmercapto-m-cresol and dimethyl phosphorochloridothionate. [1]

Health effects

Fenthion exposure to general population is quite limited based on its bioavailability. Common form of fenthion exposure is occupation related, and occurs through dermal contact or inhalation of dust and sprays. [6] Another likely means of contamination is through ingestion of food, especially, if it has been applied quite recently with fenthion. So far, ingestion is the most likely severe poisoning case on humans and animals. [1] To avoid this, crops applied with fenthion should be allowed enough degradation time before harvesting. Normally, two to four weeks time is enough depending upon the type of crop.

Fenthion poisoning is consistent with symptoms of other organophosphate effects on human health. Primarily, the effect is cholinesterase inhibition.

Acute toxicity

Acute poisoning of fenthion results in miosis (pinpoint pupils), headache, nausea/vomiting, dizziness, muscle weakness, drowsiness, lethargy, agitation, or anxiety. If the poisoning is moderate or severe, it results in chest tightness, breathing difficulty, hypertension, abdominal pain, diarrhea, heavy salivation, profuse sweating, or fasciculation. [4] [6]

Chronic toxicity

Chronic effect of fenthion has not been reported. [6]

Environmental effects

Despite short half-life in the environment, fenthion toxicity is highly significant to birds and estuarine/marine invertebrates. [4] Even though some parts of the world use fenthion to control pest birds, such as weaver bird, many non-targeted wild birds are victim of fenthion poisoning. Acute symptoms of fenthion poisoning in birds include tearing of the eyes, foamy salivation, lack of movement, tremors, congestion of the windpipe, lack of coordination in walking, and an abnormally rapid rate of breathing or difficult breathing. Fenthion has been found toxic to fishes and other aquatic invertebrates. Bees are also found to be greatly affected by fenthion contamination. [3]

Degradation in nature

Photodegradation and biodegradation are common mechanisms of fenthion degradation in the environment. In the atmosphere, vapor phase fenthion reacts rapidly with photochemically produced hydroxyl radicals, and its half-life is about 5 hours. In soil and water, photodegradation is again predominant mechanism if there is enough presence of sunlight. Under normal aquatic environment, half-life of fenthion in water is 2.9 to 21.1 days. [1] It may be photodynamically, chemically or biologically degraded. The degradation mechanisms can be hydrolysis, oxidation, and/or alkylation-dealkylation, which are dependent on the presence of light, temperature, alkali, or enzymatic activity. [7]

In soil, fenthion degradation ranges from four to six weeks and it occurs through photodegradation as well as anaerobic or non-photolytic organisms. However, soil particles strongly adsorb fenthion making it less susceptible to percolate with water through the soil. [6]

Regulation

India

Fenthion was used in India for more than 30 years as a larvicide for control of mosquito larvae. The compound was on the review list of Central Insecticide Board in India and they decided to ban the product due to high toxicity for usage. The product cannot be manufactured in India after January 2017. The government of India has released the Gazzetta notification with that effect of banning many toxic insecticides such as fenthion and DDVP. [8]

Australia

Fenthion and dimethoate were widely used to combat the Queensland fruit fly (Bactrocera tryoni), a species that has caused more than $28.5 million a year in damage to Australian fruit crops. However, it was banned in 2011 due to safety concerns. [9] Other insecticides and control techniques are being investigated to control the spread of this pest.

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are meant to control pests. This includes herbicide, insecticide, nematicide, molluscicide, piscicide, avicide, rodenticide, bactericide, insect repellent, animal repellent, microbicide, fungicide, and lampricide. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are intended to serve as plant protection products, which in general, protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides can significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Carbofuran</span> Toxic carbamate pesticide

Carbofuran is a carbamate pesticide, widely used around the world to control insects on a wide variety of field crops, including potatoes, corn and soybeans. It is a systemic insecticide, which means that the plant absorbs it through the roots, and from there the plant distributes it throughout its organs where insecticidal concentrations are attained. Carbofuran also has contact activity against pests. It is one of the most toxic pesticides still in use.

<span class="mw-page-title-main">Malathion</span> Chemical compound

Malathion is an organophosphate insecticide which acts as an acetylcholinesterase inhibitor. In the USSR, it was known as carbophos, in New Zealand and Australia as maldison and in South Africa as mercaptothion.

<span class="mw-page-title-main">Organophosphate</span> Organic compounds with the structure O=P(OR)3

In organic chemistry, organophosphates are a class of organophosphorus compounds with the general structure O=P(OR)3, a central phosphate molecule with alkyl or aromatic substituents. They can be considered as esters of phosphoric acid.

<span class="mw-page-title-main">Ethion</span> Chemical compound

Ethion (C9H22O4P2S4) is an organophosphate insecticide. Ethion is known to affect a neural enzyme called acetylcholinesterase and prevent it from working.

Demeton-S-methyl is an organic compound with the molecular formula C6H15O3PS2. It was used as an organothiophosphate acaricide and organothiophosphate insecticide. It is flammable. With prolonged storage, Demeton-S-methyl becomes more toxic due to formation of a sulfonium derivative which has greater affinity to the human form of the acetylcholinesterase enzyme, and this may present a hazard in agricultural use.

<span class="mw-page-title-main">Aldicarb</span> Chemical compound (insecticide)

Aldicarb is a carbamate insecticide which is the active substance in the pesticide Temik. It is effective against thrips, aphids, spider mites, lygus, fleahoppers, and leafminers, but is primarily used as a nematicide. Aldicarb is a cholinesterase inhibitor which prevents the breakdown of acetylcholine in the synapse. Aldicarb is considered "extremely hazardous" by the EPA and World Health Organization and has been banned in more than 100 countries. In case of severe poisoning, the victim dies of respiratory failure.

<span class="mw-page-title-main">Methoxychlor</span> Synthetic organochloride insecticide, now obsolete.

Methoxychlor is a synthetic organochloride insecticide, now obsolete. Tradenames for methoxychlor include Chemform, Maralate, Methoxo, Methoxcide, Metox, and Moxie.

<span class="mw-page-title-main">Azinphos-methyl</span> Chemical compound

Azinphos-methyl (Guthion) is a broad spectrum organophosphate insecticide manufactured by Bayer CropScience, Gowan Co., and Makhteshim Agan. Like other pesticides in this class, it owes its insecticidal properties to the fact that it is an acetylcholinesterase inhibitor. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act, and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.

<span class="mw-page-title-main">Phosmet</span> Organophosphate non-systemic insecticide

Phosmet is a phthalimide-derived, non-systemic, organophosphate insecticide used on plants and animals. It is mainly used on apple trees for control of codling moth, though it is also used on a wide range of fruit crops, ornamentals, and vines for the control of aphids, suckers, mites, and fruit flies.

<span class="mw-page-title-main">Dimethoate</span> Chemical compound

Dimethoate is a widely used organophosphate insecticide and acaricide. It was patented and introduced in the 1950s by American Cyanamid. Like other organophosphates, dimethoate is an acetylcholinesterase inhibitor which disables cholinesterase, an enzyme essential for central nervous system function. It acts both by contact and through ingestion. It is readily absorbed and distributed throughout plant tissues, and is degraded relatively rapidly. One of the breakdown products of dimethoate is omethoate, a potent cholinesterase inhibitor, is ten times more toxic than its parent compound.

<span class="mw-page-title-main">Methomyl</span> Chemical compound

Methomyl is a carbamate insecticide introduced in 1966. It is highly toxic to humans, livestock, pets, and wildlife. The EU and UK imposed a pesticide residue limit of 20 µg/kg for apples and oranges.

<span class="mw-page-title-main">Environmental impact of pesticides</span> Environmental effect

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

<span class="mw-page-title-main">Clothianidin</span> Chemical compound

Clothianidin is an insecticide developed by Takeda Chemical Industries and Bayer AG. Similar to thiamethoxam and imidacloprid, it is a neonicotinoid. Neonicotinoids are a class of insecticides that are chemically similar to nicotine, which has been used as a pesticide since the late 1700s. Clothianidin and other neonicotinoids act on the central nervous system of insects as an agonist of nAChR, the same receptor as acetylcholine, the neurotransmitter that stimulates and activating post-synaptic acetylcholine receptors but not inhibiting AChE. Clothianidin and other neonicotinoids were developed to last longer than nicotine, which is more toxic and which breaks down too quickly in the environment.

<span class="mw-page-title-main">Disulfoton</span> Chemical compound

Disulfoton is an organophosphate acetylcholinesterase inhibitor used as an insecticide. It is manufactured under the name Di-Syston by Bayer CropScience. Disulfoton in its pure form is a colorless oil but the technical product used in vegetable fields is dark and yellowish with a sulfur odor. Disulfoton is processed as a liquid into carrier granules, these granules are mixed with fertilizer and clay to be made into a spike, designed to be driven into the ground. The pesticide is absorbed over time by the roots and translocated to all parts of the plant. The pesticide acts as a cholinesterase inhibitor and gives long lasting control.

<span class="mw-page-title-main">Propoxur</span> Chemical compound

Propoxur (Baygon) is a carbamate non-systemic insecticide, produced from catechol, and was introduced in 1959. It has a fast knockdown and long residual effect, and is used against turf, forestry, and household pests and fleas. It is also used in pest control for domestic animals, Anopheles mosquitoes, ants, gypsy moths, and other agricultural pests. It can also be used as a molluscicide.

<span class="mw-page-title-main">Naled</span> Organophosphate insecticide

Naled (Dibrom) is an organophosphate insecticide. Its chemical name is dimethyl 1,2-dibromo-2,2-dichloroethylphosphate.

<span class="mw-page-title-main">Carbophenothion</span> Chemical compound

Carbophenothion also known as Stauffer R 1303 as for the manufacturer, Stauffer Chemical, is an organophosphorus chemical compound. It was used as a pesticide for citrus fruits under the name of Trithion. Carbophenothion was used as an insecticide and acaricide. Although not used anymore it is still a restricted use pesticide in the United States. The chemical is identified in the US as an extremely hazardous substance according to the Emergency Planning and Community Right-to-Know Act.

<span class="mw-page-title-main">Terbufos</span> Chemical compound

Terbufos is a chemical compound used in insecticides and nematicides. It is part of the chemical family of organophosphates. It is a clear, colourless to pale yellow or reddish-brown liquid and sold commercially as granulate.

References

  1. 1 2 3 4 5 HSDB. (2003). Hazardous Substance Data Bank: Fenthion. National Library of Medicine: National Toxicology Program. Available at http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB Accessed April 29, 2009.
  2. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0285". National Institute for Occupational Safety and Health (NIOSH).
  3. 1 2 3 4 5 EXTOXNET. (2003). Pesticide information Profile for Fenthion. Cooperative Extension Offices of Cornell University, Michigan State University, Oregon State University, and University of California at Davis. Available at http://pmep.cce.cornell.edu/profiles/extoxnet/dienochlor-glyphosate/fenthion-ext.html Accessed April 25, 2009.
  4. 1 2 3 USEPA. (2001). Interim Reregeistration Eligibility Decision for Fenthion. United States Environmental Protection Agency. Available at http://www.epa.gov/pesticides/reregistration/REDs/0290ired.pdf Accessed April 25, 2009.
  5. APVMA. (2005). Fenthion Review - Frequently asked questions. Australian Pesticides and Veterinary Medicines Authority. Available at http://www.apvma.gov.au/chemrev/fenthion_faq.shtml Archived 2009-05-19 at the Wayback Machine Accessed April 26, 2009.
  6. 1 2 3 4 5 ASTDR. (2005). Toxicologic Information about Insecticides Used for Eradicating Mosquitoes (West Nile Virus Control). Department of Health and Human Services: Agency for Toxic Substances and Disease Registry. Available at Accessed April 25, 2009.
  7. Wang, T.; Kadlac, T.; Lenahan, R. (1989). "Persistence of fenthion in the aquatic environment". Bulletin of Environmental Contamination and Toxicology. 42 (3): 389–94. doi:10.1007/BF01699965. PMID   2706349. S2CID   39628676.
  8. "DRAFT ORDER - Banning of Pesticides Order, 2016".
  9. Lloyd, Annice C.; Hamacek, Edward L.; Kopittke, Rosemary A.; Peek, Thelma; Wyatt, Pauline M.; Neale, Christine J.; Eelkema, Marianne; Gu, Hainan (May 2010). "Area-wide management of fruit flies (Diptera: Tephritidae) in the Central Burnett district of Queensland, Australia". Crop Protection. 29 (5): 462–469. doi:10.1016/j.cropro.2009.11.003. ISSN   0261-2194.