Hexaethyl tetraphosphate

Last updated
Hexaethyl tetraphosphate
Hexaethyl tetraphosphate.svg
Names
Preferred IUPAC name
Hexaethyl tetraphosphate
Other names
HETP; ethyl tetraphosphate, hexa-; Bladan Base
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.010.961 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/6C2H6.4H3O4P/c6*1-2;4*1-5(2,3)4/h6*1-2H3;4*(H3,1,2,3,4)/p-12 Yes check.svgY
    Key: DVNMJDOOCFYQAV-UHFFFAOYSA-B Yes check.svgY
  • InChI=1S/C12H30O13P4/c1-7-17-26(13,18-8-2)23-28(15,21-11-5)25-29(16, 22-12-6)24-27(14,19-9-3)20-10-4/h7-12H2,1-6H3
    Key: DAJYZXUXDOSMCG-UHFFFAOYSA-N
  • [O-]P([O-])(=O)[O-].[O-]P([O-])([O-])=O.CC.CC.CC.CC.CC.CC.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O
Properties
C12H30P4O13
Molar mass 506.25 g/mol
Appearanceyellow to brown liquid
Density 1.331 g/cm3
Melting point −40 °C (−40 °F; 233 K)
Boiling point 467.01 °C (872.62 °F; 740.16 K)
moderate
Solubility most organic solvents
1.443
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
skin absorption; inhalation
Flash point 120.82 °C (249.48 °F; 393.97 K)
Related compounds
Related compounds
tetraethyl pyrophosphate
pentaethyl triphosphate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Hexaethyl tetraphosphate (also known as HETP) is the organophosphorus compound with the chemical formula [(C2H5O)3P2O3]2O. The compound has not been isolated in pure form but appears to be a colorless liquid at room temperature. Commercial samples appear brown due to impurities. [1] [2] It is a constituent of the insecticide Bladan. [3] In the 1940s, it was about as significant an insecticide as DDT and was referred to as "another of DDT's rivals for fame" in a 1948 book. [4]

Contents

Preparation, structure, and properties

Mixtures containing hexaethyl tetraphosphate are produced by heating diethyl ether and phosphorus pentoxide. The reaction entails cleavage of the C-O bond of the ether. [5] The molecule contains three pyrophosphate bonds, which are the sites of high reactivity. The compound exists as two diastereomers, the meso- and dl-isomers.

Hexaethyl tetraphosphate does not burn readily. It is miscible and soluble in water. [6] It is also soluble in a large number of organic solvents but not simple hydrocarbons. [1] Hydride reducing agents, convert it to phosphine, a toxic gas. [6] Hexaethyl tetraphosphate readily hydrolyzes to nontoxic products. [1]

Since the material has not been obtained in pure form, the properties remain unverified. [3]

Hexaethyl tetraphosphate does not noticeably corrode metals such as brass and iron. However, when a small amount of water is added to the chemical, it forms a strong acid and quickly corrodes galvanized iron and more slowly corrodes pure iron. Hexaethyl tetraphosphate diluted with 0.1% water has a pH of 2.5. [3]

Precautions and toxicity

Hexaethyl tetraphosphate can give off fumes that are toxic or corrosive if it is heated. Runoff containing the chemical can also lead to the pollution of waterways. Containers of it can also explode at high temperatures. If inhaled, swallowed, or absorbed via the skin, it can cause death. [6] Mites, aphids, thrips, leafhoppers, and some types of caterpillars are highly susceptible to being poisoned by hexaethyl tetraphosphate. [1] [7] The chemical's toxicity to insects is not affected by whether it is made by the Scrader process or the Woodstock process. [8] It is also very toxic to humans. [3]

Out of 133 plant species that were tested for a reaction to hexaethyl tetraphosphate, only two types of plants were negatively affected. These were chrysanthemums and tomatoes. [3]

The LD50 of hexaethyl tetraphosphate for thrips is 0.01%. 99% of aphids can be killed by a concentration of 1 to 2.5 grams of a 10% solution of the chemical in a 1000 cubic foot area. In one experiment, 100% of melon aphids were killed after exposure to an aqueous solution containing 0.025% hexaethyl tetraphosphate and 0.025% sodium lauryl sulfate. 99% of aphids can be killed by 0.3 grams of a 10% solution of the chemical in methyl chloride in 1000 cubic feet, and 100% of aphids can be killed by twice the amount of solution. 96% of apple aphids can be killed be exposure to an aqueous solution of 0.1% hexaethyl tetraphosphate and 0.05% sodium lauryl sulfate. Dust containing 3% hexaethyl tetraphosphate at a concentration of 40 pounds per acre can kill some bean aphids. [8] 100% of cabbage aphids can be killed by an aqueous solution of 0.1% of the chemical and 0.05% sodium lauryl sulfate. Cabbage aphids can be quickly killed by a spray containing one pint of the chemical per 100 gallons of water. [9]

100% of chrysanthemum aphids can be killed by an aqueous solution of 0.1% hexaethyl tetraphosphate and 0.05% sodium lauryl sulfate. 97% of chrysanthemum aphids can be killed by 3 grams of a 10% solution of the chemical in 1000 cubic feet. 100% of helianthus aphids can be killed by an aqueous solution containing 0.05% each of hexaethyl tetraphosphate and sodium lauryl sulfate. 94% of pea aphids can be killed by exposure for 24 hours to an emulsion containing a concentration of 2.4% of the chemical. 90% of potato aphids can be killed by exposure for 42 hours to a one pint of a 50% solution of the chemical in 100 gallons of water. [9]

The effects of hexaethyl tetraphosphate on the cholinesterase of rat and cockroach tissue have been tested. [10] It is considered less toxic then its analog TEPP:

Non-human LD50 of HETP [11] vs. TEPP, [12] mg/kg of body weight
Animalrabbit, i. v. rat, oral rat, i. p. rat, s. c. mouse, oralmouse, i. p.
HETP0.6972.50.64566.1
TEPP0.31.10.650.27930.83

Production

Hexaethyl tetraphosphate was first synthesised by the German chemist Gerhard Schrader, who reacted phosphorus oxychloride and triethyl orthophosphate at approximately 150 °C. This reaction is known as the Schrader process. The Germans also made hexaethyl tetraphosphate by phosphorus oxychloride and ethyl alcohol. This reaction requires slightly lower pressure than the Schrader process. [1] The reaction has a chemical equation of POCl3 + 3(C2H5)3PO4 → (C2H5)6P4O13 + 3C2H5Cl. [7]

By 1947, hexaethyl tetraphosphate was being produced on a commercial scale. It cost US$1.10 per pound in the form of drums and $2.00 per pound in the form of carboys. [7] In the 1940s, the chemical was commercially produced at concentrations of 50%. [8]

Hexaethyl tetraphosphate's U.N. Shipping Number is 1611. [13]

Applications

Hexaethyl tetraphosphate is used as an insecticide, in particular, the insecticide Bladan. [1] The Germans commonly used this chemical as an insecticide during World War II, when nicotine-based insecticides were not available. [1]

History

Hexaethyl tetraphosphate was first described by Schrader in 1938. [1] [7] It was discovered during research on chemical warfare agents. [1] Americans first heard of the chemical after 1945, from two people named Hall and Kilgore. The United States began to produce the chemical in 1946. [7]

Related Research Articles

Cyanide Any chemical compound with cyanide anion

A cyanide is a chemical compound that contains a C≡N functional group. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom.

Sodium dodecyl sulfate (SDS) or sodium lauryl sulfate (SLS), sometimes written sodium laurilsulfate, is an organic compound with the formula CH3(CH2)11OSO3Na. It is an anionic surfactant used in many cleaning and hygiene products. This compound is the sodium salt of the 12-carbon an organosulfate. Its hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties and so make it useful as a detergent. SDS is also component of mixtures produced from inexpensive coconut and palm oils. SDS is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical, and food products, as well as of industrial and commercial cleaning and product formulations.

Boric acid Weak acid of boron

Boric acid, more specifically orthoboric acid, is a compound of boron, oxygen, and hydrogen with formula BO3H3 or B(OH)3. It may also be called hydrogen borate or boracic acid. It is usually encountered as colorless crystals or a white powder, that dissolves in water, and occurs in nature as the mineral sassolite. It is a weak acid that yields various borate anions and salts, and can react with alcohols to form borate esters.

Surfactant Substance that lowers the surface tension between a liquid and another material

Surfactants are compounds that lower the surface tension between two liquids, between a gas and a liquid, or between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming agents, or dispersants. The word "surfactant" is a blend of surface-active agent, coined c.  1950.

Insecticide Pesticide used against insects

Insecticides are substances used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

Pyrethrum was a genus of several Old World plants now classified as Chrysanthemum or Tanacetum which are cultivated as ornamentals for their showy flower heads. Pyrethrum continues to be used as a common name for plants formerly included in the genus Pyrethrum. Pyrethrum is also the name of a natural insecticide made from the dried flower heads of Chrysanthemum cinerariifolium and Chrysanthemum coccineum. Its active ingredient are pyrethrins.

Pyrethrin Class of organic chemical compounds with insecticidal properties

The pyrethrins are a class of organic compounds normally derived from Chrysanthemum cinerariifolium that have potent insecticidal activity by targeting the nervous systems of insects. Pyrethrin naturally occurs in chrysanthemum flowers and is often considered an organic insecticide when it is not combined with piperonyl butoxide or other synthetic adjuvants. Their insecticidal and insect-repellent properties have been known and used for thousands of years.

Calcium hydroxide Inorganic compound of formula Ca(OH)2

Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca(OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed or slaked with water. It has many names including hydrated lime, caustic lime, builders' lime, slaked lime, cal, and pickling lime. Calcium hydroxide is used in many applications, including food preparation, where it has been identified as E number E526. Limewater, also called milk of lime, is the common name for a saturated solution of calcium hydroxide.

Copper(II) sulfate, also known as copper sulphate, is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate is the most common hydrate of copper(II) sulfate. Older names for the pentahydrate include blue vitriol, bluestone, vitriol of copper, and Roman vitriol.

Ammonium lauryl sulfate (ALS) is the common name for ammonium dodecyl sulfate (CH3(CH2)10CH2OSO3NH4). The anion consists of a nonpolar hydrocarbon chain and a polar sulfate end group. The combination of nonpolar and polar groups confers surfactant properties to the anion: it facilitates dissolution of both polar and non-polar materials. ALS is classified as a sulfate ester. It is found primarily in shampoos and body-wash as a foaming agent./ Lauryl sulfates are very high-foam surfactants that disrupt the surface tension of water in part by forming micelles at the surface-air interface.

Barium chloride Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is white, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting first to the dihydrate BaCl2(H2O)2. It has limited use in the laboratory and industry.

Sodium azide Chemical compound

Sodium azide is the inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in legacy car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water and is very acutely poisonous.

Sodium thiosulfate Chemical compound

Sodium thiosulfate (sodium thiosulphate) is an inorganic compound with the formula Na2S2O3.xH2O. Typically it is available as the white or colorless pentahydrate, Na2S2O3·5H2O. The solid is an efflorescent (loses water readily) crystalline substance that dissolves well in water.

Diazinon Chemical compound

Diazinon, a colorless to dark brown liquid, is a thiophosphoric acid ester developed in 1952 by Ciba-Geigy, a Swiss chemical company. It is a nonsystemic organophosphate insecticide formerly used to control cockroaches, silverfish, ants, and fleas in residential, non-food buildings. Diazinon was heavily used during the 1970s and early 1980s for general-purpose gardening use and indoor pest control. A bait form was used to control scavenger wasps in the western U.S. Diazinon is used in flea collars for domestic pets in Australia and New Zealand. Residential uses of diazinon were outlawed in the U.S. in 2004 because of human health risks but it is still approved for agricultural uses. An emergency antidote is atropine.

Ammonium sulfate Chemical compound

Ammonium sulfate (American English and international scientific usage; ammonium sulphate in British English); (NH4)2SO4, is an inorganic salt with a number of commercial uses. The most common use is as a soil fertilizer. It contains 21% nitrogen and 24% sulfur.

Demeton-S-methyl is an organic compound with the molecular formula C6H15O3PS2. It was used as an organothiophosphate acaricide and organothiophosphate insecticide. It is flammable. With prolonged storage, Demeton-S-methyl becomes more toxic due to formation of a sulfonium derivative which has greater affinity to the human form of the acetylcholinesterase enzyme, and this may present a hazard in agricultural use.

Sodium sulfide Chemical compound

Sodium sulfide is the chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts are colorless solids. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, an extremely toxic, flammable and corrosive gas which smells like rotten eggs.

Sodium ethyl xanthate Chemical compound

Sodium ethyl xanthate (SEX) is an organosulfur compound with the chemical formula CH3CH2OCS2Na. It is a pale yellow powder, which is usually obtained as the dihydrate. Sodium ethyl xanthate is used in the mining industry as a flotation agent. A closely related potassium ethyl xanthate (KEX) is obtained as the anhydrous salt.

Sulfotep Chemical compound

Sulfotep (also known as tetraethyldithiopyrophosphate and TEDP) is a pesticide commonly used in greenhouses as a fumigant. The substance is also known as Dithione, Dithiophos, and many other names. Sulfotep has the molecular formula C8H20O5P2S2 and belongs to the organophosphate class of chemicals. It has a cholinergic effect, involving depression of the cholinesterase activity of the peripheral and central nervous system of insects. The transduction of signals is disturbed at the synapses that make use of acetylcholine. Sulfotep is a mobile oil that is pale yellow-colored and smells like garlic. It is primarily used as an insecticide.

Triazofos Chemical compound

Triazofos is a chemical compound used in acaricides, insecticides, and nematicides.

References

  1. 1 2 3 4 5 6 7 8 9 S.A. Hall, Martin Jacobson (April 1948), "Hexaethyl Tetraphosphate and Tetraethyl Pyrophosphate", Industrial & Engineering Chemistry, 40 (4): 694–699, doi:10.1021/ie50460a024
  2. Robert Lee Metcalf (1948), The mode of action of organic insecticides, Issues 1-5
  3. 1 2 3 4 5 A digest of information on hexaethyl tetraphosphate, Washington, D.C. : U.S. Department of Agriculture, Agricultural Research Administration, Bureau of Entomology and Plant Quarantine, 1947, retrieved July 16, 2013
  4. Health Instruction Yearbook 1948, 1948, ISBN   9780804704830 , retrieved July 16, 2013
  5. Burkhardt, Gottfried; Klein, Melvin P.; Calvin, Melvin (1965). "The Structure of the So-Called "Ethyl Metaphosphate" (Langheld Ester)" (PDF). Journal of the American Chemical Society. 87 (3): 591–6. doi:10.1021/ja01081a035. S2CID   101873428.{{cite journal}}: CS1 maint: uses authors parameter (link)
  6. 1 2 3 Hexaethyl triphosphate , retrieved July 16, 2013
  7. 1 2 3 4 5 A digest of information on hexaethyl tetraphosphate, Washington, D.C. : U.S. Department of Agriculture, Agricultural Research Administration, Bureau of Entomology and Plant Quarantine, 1947
  8. 1 2 3 A digest of information on hexaethyl tetraphosphate, Washington, D.C. : U.S. Department of Agriculture, Agricultural Research Administration, Bureau of Entomology and Plant Quarantine, 1947
  9. 1 2 A digest of information on hexaethyl tetraphosphate, Washington, D.C. : U.S. Department of Agriculture, Agricultural Research Administration, Bureau of Entomology and Plant Quarantine, 1947
  10. Proceedings of the Society for Experimental Biology and Medicine, 1947
  11. "Hazardous Substances Data Bank (HSDB) : 558".
  12. "Hazardous Substances Data Bank (HSDB) : 842".
  13. Nicholas P. Cheremisinoff (January 1, 1999), Handbook of Industrial Toxicology and Hazardous Materials, ISBN   9780824719357