TMTFA

Last updated
TMTFA
TMTFA.png
Names
Preferred IUPAC name
N,N,N-Trimethyl-3-(trifluoroacetyl)anilinium
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C11H13F3NO/c1-15(2,3)9-6-4-5-8(7-9)10(16)11(12,13)14/h4-7H,1-3H3/q+1
    Key: JIBZSTPMDKSJOX-UHFFFAOYSA-N
  • C[N+](C)(C)C1=CC=CC(=C1)C(=O)C(F)(F)F
Properties
C11H13F3NO
Molar mass 232.226 g·mol−1
Hazards
Lethal dose or concentration (LD, LC):
1.6 mg/kg (intraperitoneal, mice) (as iodide salt) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

TMTFA is an extremely potent acetylcholinesterase inhibitor. As a transition state analog of acetylcholinesterase, TMTFA is able to inhibit acetylcholinesterase at extremely low concentrations (within the femtomolar range), making it one of the most potent acetylcholinesterase inhibitors known. [2] [3] [4]

Contents

Mechanism of action

TMTFA has a reactive ketone group that can covalently bind to the serine residue in the active site of acetylcholinesterase. This is due to the electron-withdrawing trifluoromethyl group on the carbonyl group. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Elias James Corey</span> American chemist (born 1928)

Elias James Corey is an American organic chemist. In 1990, he won the Nobel Prize in Chemistry "for his development of the theory and methodology of organic synthesis", specifically retrosynthetic analysis.

The Fischer indole synthesis is a chemical reaction that produces the aromatic heterocycle indole from a (substituted) phenylhydrazine and an aldehyde or ketone under acidic conditions. The reaction was discovered in 1883 by Emil Fischer. Today antimigraine drugs of the triptan class are often synthesized by this method.

The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step. As such, there is no obvious retron for this reaction. The reaction was reported by Nikolai Kischner in 1911 and Ludwig Wolff in 1912.

<span class="mw-page-title-main">Corey–Itsuno reduction</span>

The Corey–Itsuno reduction, also known as the Corey–Bakshi–Shibata (CBS) reduction, is a chemical reaction in which a prochiral ketone is enantioselectively reduced to produce the corresponding chiral, non-racemic alcohol. The oxazaborolidine reagent which mediates the enantioselective reduction of ketones was previously developed by the laboratory of Itsuno and thus this transformation may more properly be called the Itsuno-Corey oxazaborolidine reduction.

The Baeyer–Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from a cyclic ketone, using peroxyacids or peroxides as the oxidant. The reaction is named after Adolf von Baeyer and Victor Villiger who first reported the reaction in 1899.

<span class="mw-page-title-main">Suicide inhibition</span> Type of enzyme inhibition by forming an irreversible complex with the substrate

In biochemistry, suicide inhibition, also known as suicide inactivation or mechanism-based inhibition, is an irreversible form of enzyme inhibition that occurs when an enzyme binds a substrate analog and forms an irreversible complex with it through a covalent bond during the normal catalysis reaction. The inhibitor binds to the active site where it is modified by the enzyme to produce a reactive group that reacts irreversibly to form a stable inhibitor-enzyme complex. This usually uses a prosthetic group or a coenzyme, forming electrophilic alpha and beta unsaturated carbonyl compounds and imines.

In chemistry, transfer hydrogenation is a chemical reaction involving the addition of hydrogen to a compound from a source other than molecular H2. It is applied in laboratory and industrial organic synthesis to saturate organic compounds and reduce ketones to alcohols, and imines to amines. It avoids the need for high-pressure molecular H2 used in conventional hydrogenation. Transfer hydrogenation usually occurs at mild temperature and pressure conditions using organic or organometallic catalysts, many of which are chiral, allowing efficient asymmetric synthesis. It uses hydrogen donor compounds such as formic acid, isopropanol or dihydroanthracene, dehydrogenating them to CO2, acetone, or anthracene respectively. Often, the donor molecules also function as solvents for the reaction. A large scale application of transfer hydrogenation is coal liquefaction using "donor solvents" such as tetralin.

<span class="mw-page-title-main">Enzyme inhibitor</span> Molecule that blocks enzyme activity

An enzyme inhibitor is a molecule that binds to an enzyme and blocks its activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which substrate molecules are converted into products. An enzyme facilitates a specific chemical reaction by binding the substrate to its active site, a specialized area on the enzyme that accelerates the most difficult step of the reaction.

Transition state analogs, are chemical compounds with a chemical structure that resembles the transition state of a substrate molecule in an enzyme-catalyzed chemical reaction. Enzymes interact with a substrate by means of strain or distortions, moving the substrate towards the transition state. Transition state analogs can be used as inhibitors in enzyme-catalyzed reactions by blocking the active site of the enzyme. Theory suggests that enzyme inhibitors which resembled the transition state structure would bind more tightly to the enzyme than the actual substrate. Examples of drugs that are transition state analog inhibitors include flu medications such as the neuraminidase inhibitor oseltamivir and the HIV protease inhibitors saquinavir in the treatment of AIDS.

Aralkylamine <i>N</i>-acetyltransferase Class of enzymes

Aralkylamine N-acetyltransferase (AANAT), also known as arylalkylamine N-acetyltransferase or serotonin N-acetyltransferase (SNAT), is an enzyme that is involved in the day/night rhythmic production of melatonin, by modification of serotonin. It is in humans encoded by the ~2.5 kb AANAT gene containing four exons, located on chromosome 17q25. The gene is translated into a 23 kDa large enzyme. It is well conserved through evolution and the human form of the protein is 80 percent identical to sheep and rat AANAT. It is an acetyl-CoA-dependent enzyme of the GCN5-related family of N-acetyltransferases (GNATs). It may contribute to multifactorial genetic diseases such as altered behavior in sleep/wake cycle and research is on-going with the aim of developing drugs that regulate AANAT function.

The discovery of an orally inactive peptide from snake venom established the important role of angiotensin converting enzyme (ACE) inhibitors in regulating blood pressure. This led to the development of captopril, the first ACE inhibitor. When the adverse effects of captopril became apparent new derivates were designed. Then after the discovery of two active sites of ACE: N-domain and C-domain, the development of domain-specific ACE inhibitors began.

<span class="mw-page-title-main">Acetylcholinesterase</span> Primary cholinesterase in the body

Acetylcholinesterase (HGNC symbol ACHE; EC 3.1.1.7; systematic name acetylcholine acetylhydrolase), also known as AChE, AChase or acetylhydrolase, is the primary cholinesterase in the body. It is an enzyme that catalyzes the breakdown of acetylcholine and some other choline esters that function as neurotransmitters:

<span class="mw-page-title-main">Pyridoxine 5'-phosphate synthase</span> Class of enzymes

In enzymology, a pyridoxine 5'-phosphate synthase (EC 2.6.99.2) is an enzyme that catalyzes the chemical reaction

Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction. This allows spatial information to transfer from one molecule to the target, forming the product as a single enantiomer. The chiral information is most commonly contained in a catalyst and, in this case, the information in a single molecule of catalyst may be transferred to many substrate molecules, amplifying the amount of chiral information present. Similar processes occur in nature, where a chiral molecule like an enzyme can catalyse the introduction of a chiral centre to give a product as a single enantiomer, such as amino acids, that a cell needs to function. By imitating this process, chemists can generate many novel synthetic molecules that interact with biological systems in specific ways, leading to new pharmaceutical agents and agrochemicals. The importance of asymmetric hydrogenation in both academia and industry contributed to two of its pioneers — William Standish Knowles and Ryōji Noyori — being collectively awarded one half of the 2001 Nobel Prize in Chemistry.

<span class="mw-page-title-main">Bentley compounds</span> Class of chemical compounds

The Bentley compounds are a class of semi-synthetic opioids that were first synthesized by K. W. Bentley by Diels-Alder reaction of thebaine with various dienophiles. The compounds are also known as thevinols, orvinols, or bridged oripavine derivatives, due to the characteristic 6,14-endo-ethano- or etheno-bridge and substitution at the 7α position. Buprenorphine and etorphine are perhaps the best known of the family, which was the first series of extremely potent μ-opioid agonists, with some compounds in the series having over many thousands of times the analgesic potency of morphine.

<span class="mw-page-title-main">LY-2183240</span> Chemical compound

LY-2183240 is a drug which acts both as a potent inhibitor of the reuptake of the endocannabinoid anandamide and as an inhibitor of fatty acid amide hydrolase (FAAH), the primary enzyme responsible for degrading anandamide. This leads to markedly elevated anandamide levels in the brain, and LY-2183240 has been shown to produce both analgesic and anxiolytic effects in animal models. While LY-2183240 is a potent inhibitor of FAAH, it has relatively poor selectivity and also inhibits several other enzyme side targets. Consequently, it was never developed for clinical use, though it remains widely used in research, and has also been sold as a designer drug.

<span class="mw-page-title-main">Enders SAMP/RAMP hydrazone-alkylation reaction</span>

The Enders SAMP/RAMP hydrazone alkylation reaction is an asymmetric carbon-carbon bond formation reaction facilitated by pyrrolidine chiral auxiliaries. It was pioneered by E. J. Corey and Dieter Enders in 1976, and was further developed by Enders and his group. This method is usually a three-step sequence. The first step is to form the hydrazone between (S)-1-amino-2-methoxymethylpyrrolidine (SAMP) or (R)-1-amino-2-methoxymethylpyrrolidine (RAMP) and a ketone or aldehyde. Afterwards, the hydrazone is deprotonated by lithium diisopropylamide (LDA) to form an azaenolate, which reacts with alkyl halides or other suitable electrophiles to give alkylated hydrazone species with the simultaneous generation of a new chiral center. Finally, the alkylated ketone or aldehyde can be regenerated by ozonolysis or hydrolysis.

<span class="mw-page-title-main">Chelidonine</span> Chemical compound

Chelidonine is an isolate of Papaveraceae with acetylcholinesterase and butyrylcholinesterase inhibitory activity.

<span class="mw-page-title-main">Ro 3-0422</span> Chemical compound

Ro 3-0422 is an extremely potent organophosphate acetylcholinesterase inhibitor. It is extremely toxic. The intravenous LD50 is 20 μg/kg in mice. It is over 300 times more potent than neostigmine.

Metal-ligand cooperativity (MLC) is a mode of reactivity in which a metal and ligand of a complex are both involved in the bond breaking or bond formation of a substrate during the course of a reaction. This ligand is an actor ligand rather than a spectator, and the reaction is generally only deemed to contain MLC if the actor ligand is doing more than leaving to provide an open coordination site. MLC is also referred to as "metal-ligand bifunctional catalysis." Note that MLC is not to be confused with cooperative binding.

References

  1. Brodbeck, U.; Schweikert, K.; Gentinetta, R.; Rottenberg, M. (April 1979). "Fluorinated aldehydes and ketones acting as quasi-substrate inhibitors of acetylcholinesterase". Biochimica et Biophysica Acta (BBA) - Enzymology. 567 (2): 357–369. doi:10.1016/0005-2744(79)90122-0. PMID   444532.
  2. Nair, Haridasan K.; Lee, Keun; Quinn, Daniel M. (November 1993). "m-(N,N,N-Trimethylammonio)trifluoroacetophenone: a femtomolar inhibitor of acetylcholinesterase". Journal of the American Chemical Society. 115 (22): 9939–9941. doi:10.1021/ja00075a009.
  3. Kua, Jeremy; Zhang, Yingkai; McCammon, J. Andrew (2002). "Studying Enzyme Binding Specificity in Acetylcholinesterase Using a Combined Molecular Dynamics and Multiple Docking Approach". Journal of the American Chemical Society. 124 (28): 8260–8267. doi:10.1021/ja020429l. PMID   12105904.
  4. Butini, Stefania; Campiani, Giuseppe; Borriello, Marianna; Gemma, Sandra; Panico, Alessandro; Persico, Marco; Catalanotti, Bruno; Ros, Sindu; Brindisi, Margherita; Agnusdei, Marianna; Fiorini, Isabella; Nacci, Vito; Novellino, Ettore; Belinskaya, Tatyana; Saxena, Ashima; Fattorusso, Caterina (2008). "Exploiting Protein Fluctuations at the Active-Site Gorge of Human Cholinesterases: Further Optimization of the Design Strategy to Develop Extremely Potent Inhibitors". Journal of Medicinal Chemistry. 51 (11): 3154–3170. doi:10.1021/jm701253t. PMID   18479118.
  5. Harel, Michal; Quinn, Daniel M.; Nair, Haridasan K.; Silman, Israel; Sussman, Joel L. (January 1996). "The X-ray Structure of a Transition State Analog Complex Reveals the Molecular Origins of the Catalytic Power and Substrate Specificity of Acetylcholinesterase". Journal of the American Chemical Society. 118 (10): 2340–2346. doi:10.1021/ja952232h.