Transition state analog

Last updated

Transition state analogs (transition state analogues), are chemical compounds with a chemical structure that resembles the transition state of a substrate molecule in an enzyme-catalyzed chemical reaction. Enzymes interact with a substrate by means of strain or distortions, moving the substrate towards the transition state. [1] Transition state analogs can be used as inhibitors in enzyme-catalyzed reactions by blocking the active site of the enzyme. Theory suggests that enzyme inhibitors which resembled the transition state structure would bind more tightly to the enzyme than the actual substrate. [2] Examples of drugs that are transition state analog inhibitors include flu medications such as the neuraminidase inhibitor oseltamivir and the HIV protease inhibitors saquinavir in the treatment of AIDS.

Contents

Transition state analogue

Enzyme-catalyzed reactions lower the overall activation energy of a reaction Enzyme action.png
Enzyme-catalyzed reactions lower the overall activation energy of a reaction

The transition state of a structure can best be described in regards to statistical mechanics where the energies of bonds breaking and forming have an equal probability of moving from the transition state backwards to the reactants or forward to the products. In enzyme-catalyzed reactions, the overall activation energy of the reaction is lowered when an enzyme stabilizes a high energy transition state intermediate. Transition state analogs mimic this high energy intermediate but do not undergo a catalyzed chemical reaction and can therefore bind much stronger to an enzyme than simple substrate or product analogs.

Designing transition state analogue

To design a transition state analogue, the pivotal step is the determination of transition state structure of substrate on the specific enzyme of interest with experimental method, for example, kinetic isotope effect. In addition, the transition state structure can also be predicted with computational approaches as a complementary to KIE. We will explain these two methods in brief.

Kinetic isotope effect

Kinetic isotope effect (KIE) is a measurement of the reaction rate of isotope-labeled reactants against the more common natural substrate. Kinetic isotope effect values are a ratio of the turnover number and include all steps of the reaction. [3] Intrinsic kinetic isotope values stem from the difference in the bond vibrational environment of an atom in the reactants at ground state to the environment of the atom's transition state. [3] Through the kinetic isotope effect much insight can be gained as to what the transition state looks like of an enzyme-catalyzed reaction and guide the development of transition state analogs.

Computational simulation

Computational approaches have been regarded as a useful tool to elucidate the mechanism of action of enzymes. [4] Molecular mechanics itself can not predict the electron transfer which is the fundamental of organic reaction but the molecular dynamics simulation provide sufficient information considering the flexibility of protein during catalytic reaction. The complementary method would be combined molecular mechanics/ quantum mechanics simulation (QM/MM)methods. [5] With this approach, only the atoms responsible for enzymatic reaction in the catalytic region will be reared with quantum mechanics and the rest of the atoms were treated with molecular mechanics. [6]

Examples of transition state analogue design

After determining the transition state structures using either KIE or computation simulations, the inhibitor can be designed according to the determined transition state structures or intermediates. The following three examples illustrate how the inhibitors mimic the transition state structure by changing functional groups correspond to the geometry and electrostatic distribution of the transition state structures.

Methylthioadenosine nucleosidase inhibitor

Transition state analogue example one TSA 1.png
Transition state analogue example one

Methylthioadenosine nucleosidase are enzymes that catalyse the hydrolytic deadenylation reaction of 5'-methylthioadenosine and S-adenosylhomocysteine. It is also regarded as an important target for antibacterial drug discovery because it is important in the metabolic system of bacteria and only produced by bacteria. [7] Given the different distance between nitrogen atom of adenine and the ribose anomeric carbon (see in the diagram in this section), the transition state structure can be defined by early or late dissociation stage. Based on the finding of different transition state structures, Schramm and coworkers designed two transition state analogues mimicking the early and late dissociative transition state. The early and late transition state analogue shown binding affinity (Kd) of 360 and 140 pM, respectively. [8]

Thermolysin inhibitor

Transitions state analogue example 2 TS3.png
Transitions state analogue example 2

Thermolysin is an enzyme produced by Bacillus thermoproteolyticus that catalyses the hydrolysis of peptides containing hydrophobic amino acids. [9] Therefore, it is also a target for antibacterial agents. The enzymatic reaction mechanism starts form the small peptide molecule and replaces the zinc binding water molecule towards Glu143 of thermolysin. The water molecule is then activated by both the zinc ion and the Glu143 residue and attacks the carbonyl carbon to form a tetrahedral transition state (see figure). Holden and coworkers then mimicked that tetrahedral transition state to design a series of phosphonamidate peptide analogues. Among the synthesized analogues, R = L-Leu possesses the most potent inhibitory activity (Ki = 9.1 nM). [10]

Arginase inhibitor

Transition state analogue example 3 TSA3.png
Transition state analogue example 3

Arginase is a binuclear manganese metalloprotein that catalyses the hydrolysis of L-arginine to L-ornithine and urea. It is also regarded as a drug target for the treatment of asthma. [11] The mechanism of hydrolysis of L-arginine is carried out via nucleophilic attack on the guanidino group by water, forming a tetrahedral intermediate. Studies shown that a boronic acid moiety adopts a tetrahedral configuration and serves as an inhibitor. In addition, the sulfonamide functional group can also mimic the transition state structure. [12] Evidence of boronic acid mimics as transition state analogue inhibitors of human arginase I was elucidated by x-ray crystal structures. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Chymotrypsin</span> Digestive enzyme

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum, where it performs proteolysis, the breakdown of proteins and polypeptides. Chymotrypsin preferentially cleaves peptide amide bonds where the side chain of the amino acid N-terminal to the scissile amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their side chain that fits into a hydrophobic pocket (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 side chain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme. Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine at the P1 position.

<span class="mw-page-title-main">Enzyme</span> Large biological molecule that acts as a catalyst

Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

<span class="mw-page-title-main">Arginase</span> Manganese-containing enzyme

Arginase (EC 3.5.3.1, arginine amidinase, canavanase, L-arginase, arginine transamidinase) is a manganese-containing enzyme. The reaction catalyzed by this enzyme is:

A tetrahedral intermediate is a reaction intermediate in which the bond arrangement around an initially double-bonded carbon atom has been transformed from trigonal to tetrahedral. Tetrahedral intermediates result from nucleophilic addition to a carbonyl group. The stability of tetrahedral intermediate depends on the ability of the groups attached to the new tetrahedral carbon atom to leave with the negative charge. Tetrahedral intermediates are very significant in organic syntheses and biological systems as a key intermediate in esterification, transesterification, ester hydrolysis, formation and hydrolysis of amides and peptides, hydride reductions, and other chemical reactions.

<span class="mw-page-title-main">Triosephosphate isomerase</span> Enzyme involved in glycolysis

Triose-phosphate isomerase is an enzyme that catalyzes the reversible interconversion of the triose phosphate isomers dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate.

<span class="mw-page-title-main">Enzyme kinetics</span> Study of biochemical reaction rates catalysed by an enzyme

Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or a modifier might affect the rate.

<span class="mw-page-title-main">Enzyme inhibitor</span> Molecule that blocks enzyme activity

An enzyme inhibitor is a molecule that binds to an enzyme and blocks its activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which substrate molecules are converted into products. An enzyme facilitates a specific chemical reaction by binding the substrate to its active site, a specialized area on the enzyme that accelerates the most difficult step of the reaction.

<span class="mw-page-title-main">Phosphoglycerate kinase</span> Enzyme

Phosphoglycerate kinase is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP :

<span class="mw-page-title-main">Enzyme catalysis</span> Catalysis of chemical reactions by enzymes

Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

<span class="mw-page-title-main">W. Wallace Cleland</span>

William Wallace Cleland (January 6, 1930 – March 6, 2013, often cited as W. W. Cleland, and known almost universally as "Mo Cleland", was a University of Wisconsin-Madison biochemistry professor. His research was concerned with enzyme reaction mechanism and enzyme kinetics, especially multiple-substrate enzymes. He was elected to the National Academy of Sciences in 1985.

In enzymology, a trypanothione-disulfide reductase (EC 1.8.1.12) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Chorismate mutase</span>

In enzymology, chorismate mutase is an enzyme that catalyzes the chemical reaction for the conversion of chorismate to prephenate in the pathway to the production of phenylalanine and tyrosine, also known as the shikimate pathway. Hence, this enzyme has one substrate, chorismate, and one product, prephenate. Chorismate mutase is found at a branch point in the pathway. The enzyme channels the substrate, chorismate to the biosynthesis of tyrosine and phenylalanine and away from tryptophan. Its role in maintaining the balance of these aromatic amino acids in the cell is vital. This is the single known example of a naturally occurring enzyme catalyzing a pericyclic reaction. Chorismate mutase is only found in fungi, bacteria, and higher plants. Some varieties of this protein may use the morpheein model of allosteric regulation.

<span class="mw-page-title-main">D-lysine 5,6-aminomutase</span>

In enzymology, D-lysine 5,6-aminomutase is an enzyme that catalyzes the chemical reaction

In enzymology, an adenosylhomocysteine nucleosidase (EC 3.2.2.9) is an enzyme that catalyzes the chemical reaction

In enzymology, a methylthioadenosine nucleosidase (EC 3.2.2.16) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Purine nucleosidase</span>

In enzymology, a purine nucleosidase (EC 3.2.2.1) is an enzyme that catalyzes the chemical reaction

Substrate analogs, are chemical compounds with a chemical structure that resemble the substrate molecule in an enzyme-catalyzed chemical reaction. Substrate analogs can act as competitive inhibitors of an enzymatic reaction. An example is phosphoramidate to the Tetrahymena group I ribozyme. Other examples of substrate analogs include 5’-adenylyl-imidodiphosphate, a substrate analog of ATP, and 3-acetylpyridine adenine dinucleotide, a substrate analog of NADH.

Jeremy Randall Knowles was a professor of chemistry at Harvard University who served as dean of the Harvard University faculty of arts and sciences (FAS) from 1991 to 2002. He joined Harvard in 1974, received many awards for his research, and remained at Harvard until his death, leaving the faculty for a decade to serve as Dean. Knowles died on 3 April 2008 at his home.

<span class="mw-page-title-main">Vaborbactam</span> Chemical compound

Vaborbactam (INN) is a non-β-lactam β-lactamase inhibitor discovered by Rempex Pharmaceuticals, a subsidiary of The Medicines Company. While not effective as an antibiotic by itself, it restores potency to existing antibiotics by inhibiting the β-lactamase enzymes that would otherwise degrade them. When combined with an appropriate antibiotic it can be used for the treatment of gram-negative bacterial infections.

John P. Richard is a chemist and academic. He is a SUNY Distinguished Professor at the University at Buffalo.

References

  1. Silverman RB (2004). The Organic Chemistry of Drug Design and Drug Action . San Diego, CA: Elsevier Academic Press. ISBN   0-12-643732-7.
  2. Davis JP, Cain GA, Pitts WJ, Magolda RL, Copeland RA (January 1996). "The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase". Biochemistry. 35 (4): 1270–1273. doi:10.1021/bi952168g. PMID   8573583.
  3. 1 2 Schramm VL (2011). "Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes". Annual Review of Biochemistry. 80 (1): 703–732. doi:10.1146/annurev-biochem-061809-100742. PMC   5502542 . PMID   21675920.
  4. Kollman P, Kuhn B, Peräkylä M (2002). "Computational Studies of Enzyme-Catalyzed Reactions: Where Are We in Predicting Mechanisms and in Understanding the Nature of Enzyme Catalysis?". J. Phys. Chem. B. 106 (7): 1537–1542. doi:10.1021/jp012017p.
  5. Hou G, Cui Q (January 2012). "QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily". Journal of the American Chemical Society. 134 (1): 229–246. doi:10.1021/ja205226d. PMC   3257412 . PMID   22097879.
  6. Saen-Oon S, Quaytman-Machleder S, Schramm VL, Schwartz SD (October 2008). "Atomic detail of chemical transformation at the transition state of an enzymatic reaction". Proceedings of the National Academy of Sciences of the United States of America. 105 (43): 16543–16548. Bibcode:2008PNAS..10516543S. doi: 10.1073/pnas.0808413105 . PMC   2575456 . PMID   18946041.
  7. Singh V, Lee JE, Núñez S, Howell PL, Schramm VL (September 2005). "Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues". Biochemistry. 44 (35): 11647–11659. doi:10.1021/bi050863a. PMID   16128565.
  8. Gutierrez JA, Luo M, Singh V, Li L, Brown RL, Norris GE, et al. (November 2007). "Picomolar inhibitors as transition-state probes of 5'-methylthioadenosine nucleosidases". ACS Chemical Biology. 2 (11): 725–734. doi:10.1021/cb700166z. PMID   18030989.
  9. Endo S (1962). "Studies on protease produced by thermophilic bacteria". J. Ferment. Technol. 40: 346–353.
  10. Holden HM, Tronrud DE, Monzingo AF, Weaver LH, Matthews BW (December 1987). "Slow- and fast-binding inhibitors of thermolysin display different modes of binding: crystallographic analysis of extended phosphonamidate transition-state analogues". Biochemistry. 26 (26): 8542–8553. doi:10.1021/bi00400a008. PMID   3442675.
  11. Maarsingh H, Zaagsma J, Meurs H (October 2009). "Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives". British Journal of Pharmacology. 158 (3): 652–664. doi:10.1111/j.1476-5381.2009.00374.x. PMC   2765587 . PMID   19703164.
  12. Cama E, Shin H, Christianson DW (October 2003). "Design of amino acid sulfonamides as transition-state analogue inhibitors of arginase". Journal of the American Chemical Society. 125 (43): 13052–13057. doi:10.1021/ja036365b. PMID   14570477.
  13. Shishova EY, Di Costanzo L, Emig FA, Ash DE, Christianson DW (January 2009). "Probing the specificity determinants of amino acid recognition by arginase". Biochemistry. 48 (1): 121–131. doi:10.1021/bi801911v. PMC   2665027 . PMID   19093830.