Thermolysin

Last updated
Thermolysin
3TMN.jpeg
Crystallographic structure of Bacillus thermoproteolyticus thermolysin. [1]
Identifiers
EC no. 3.4.24.27
CAS no. 9073-78-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Thermolysin (EC 3.4.24.27, Bacillus thermoproteolyticus neutral proteinase, thermoase, thermoase Y10, TLN) is a thermostable neutral metalloproteinase enzyme produced by the Gram-positive bacteria Bacillus thermoproteolyticus. [2] It requires one zinc ion for enzyme activity and four calcium ions for structural stability. [3] Thermolysin specifically catalyzes the hydrolysis of peptide bonds containing hydrophobic amino acids. However thermolysin is also widely used for peptide bond formation through the reverse reaction of hydrolysis. [4] Thermolysin is the most stable member of a family of metalloproteinases produced by various Bacillus species. These enzymes are also termed 'neutral' proteinases or thermolysin -like proteinases (TLPs).

Contents

Synthesis

Like all bacterial extracellular proteases thermolysin is first synthesised by the bacterium as a pre-proenzyme. [5] Thermolysin is synthesized as a pre-proenzyme consisting of a signal peptide 28 amino acids long, a pro-peptide 204 amino acids long and the mature enzyme itself 316 amino acids in length. The signal peptide acts as a signal for translocation of pre-prothermolysin to the bacterial cytoplasmic membrane. In the periplasm pre-prothermolysin is then processed into prothermolysin by a signal peptidase. The prosequence then acts as a molecular chaperone and leads to autocleavage of the peptide bond linking pro and mature sequences. The mature protein is then secreted into the extracellular medium. [6]

Structure

Thermolysin has a molecular weight of 34,600 Da. Its overall structure consists of two roughly spherical domains with a deep cleft running across the middle of the molecule separating the two domains. The secondary structure of each domain is quite different, the N-terminal domain consists of mostly beta pleated sheet, while the C-terminal domain is mostly alpha helical in structure. These two domains are connected by a central alpha helix, spanning amino acids 137–151. [7]

In contrast to many proteins that undergo conformational changes upon heating and denaturation, thermolysin does not undergo any major conformational changes until at least 70 °C. [8] The thermal stability of members of the TLP family is measured in terms of a T50 temperature. At this temperature incubation for 30 minutes reduces the enzymes activity by half. Thermolysin has a T50 value of 86.9 °C, making it the most thermo stable member of the TLP family. [9] Studies on the contribution of calcium to thermolysin stability have shown that upon thermal inactivation a single calcium ion is released from the molecule. [10] Preventing this calcium from originally binding to the molecule by mutation of its binding site, reduced thermolysin stability by 7 °C. However, while calcium binding makes a significant contribution to stabilising thermolysin, more crucial to stability is a small cluster of N-terminal domain amino acids located at the proteins surface. [9] In particular a phenylalanine (F) at amino acid position 63 and a proline (P) at amino acid position 69 contribute significantly to thermolysin stability. Changing these amino acids to threonine (T) and alanine (A) respectively in a less stable thermolysin-like proteinase produced by Bacillus stearothermophillus (TLP-ste), results in individual reductions in stability of 7 °C (F63→T) and 6.3 °C (P69→A) and when combined a reduction in stability of 12.3 °C. [9]

Applications

Related Research Articles

<span class="mw-page-title-main">Proteolysis</span> Breakdown of proteins into smaller polypeptides or amino acids

Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion.

<span class="mw-page-title-main">Active site</span> Active region of an enzyme

In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site. Although the active site occupies only ~10–20% of the volume of an enzyme, it is the most important part as it directly catalyzes the chemical reaction. It usually consists of three to four amino acids, while other amino acids within the protein are required to maintain the tertiary structure of the enzymes.

Matrix metalloproteinases (MMPs), also known as matrix metallopeptidases or matrixins, are metalloproteinases that are calcium-dependent zinc-containing endopeptidases; other family members are adamalysins, serralysins, and astacins. The MMPs belong to a larger family of proteases known as the metzincin superfamily.

In biology and biochemistry, protease inhibitors, or antiproteases, are molecules that inhibit the function of proteases. Many naturally occurring protease inhibitors are proteins.

<span class="mw-page-title-main">Metalloproteinase</span> Type of enzyme

A metalloproteinase, or metalloprotease, is any protease enzyme whose catalytic mechanism involves a metal. An example is ADAM12 which plays a significant role in the fusion of muscle cells during embryo development, in a process known as myogenesis.

<span class="mw-page-title-main">Papain</span> Widely used enzyme extracted from papayas

Papain, also known as papaya proteinase I, is a cysteine protease enzyme present in papaya and mountain papaya. It is the namesake member of the papain-like protease family.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Cysteine protease</span> Class of enzymes

Cysteine proteases, also known as thiol proteases, are hydrolase enzymes that degrade proteins. These proteases share a common catalytic mechanism that involves a nucleophilic cysteine thiol in a catalytic triad or dyad.

Gelatinases are enzymes capable of degrading gelatin through hydrolysis, playing a major role in degradation of extracellular matrix and tissue remodeling. Gelatinases are a type of matrix metalloproteinase (MMP), a family of enzymes that depend on zinc as a cofactor and can break down parts of the extracellular matrix. MMPs have multiple subgroups, including gelatinase A and gelatinase B. Gelatinases are assigned a variety of Enzyme Commission numbers: gelatinase A uses 3.4.24.24, and gelatinase B uses 3.4.24.35, in which the first three numbers are same. The first digit, 3, is the class. Class 3 enzymes are hydrolases, enzymes that catalyze hydrolysis reactions, that is, they cleave bonds in presence of water. The next digit represents sub-class 4, or proteases, which are enzymes who hydrolyze peptide bonds in proteins. The next number is the sub-subclass of 24, which consists of metalloendopeptidases which contain metal ions in their active sites, in this case zinc, which help in cleaving peptide bonds. The last part of the EC number is the serial number, identifying specific enzymes within a sub-subclass. 24 represents gelatinase A, which is a metalloproteinase that breaks down gelatin and collagen, while 35 represents gelatinase B, which hydrolyzes peptide bonds.

<span class="mw-page-title-main">Aminopeptidase</span> Class of enzymes

Aminopeptidases are enzymes that catalyze the cleavage of amino acids from the N-terminus (beginning), of proteins or peptides. They are found in many organisms; in the cell, they are found in many organelles, in the cytosol, and as membrane proteins. Aminopeptidases are used in essential cellular functions, and are often zinc metalloenzymes, containing a zinc cofactor.

Transition state analogs, are chemical compounds with a chemical structure that resembles the transition state of a substrate molecule in an enzyme-catalyzed chemical reaction. Enzymes interact with a substrate by means of strain or distortions, moving the substrate towards the transition state. Transition state analogs can be used as inhibitors in enzyme-catalyzed reactions by blocking the active site of the enzyme. Theory suggests that enzyme inhibitors which resembled the transition state structure would bind more tightly to the enzyme than the actual substrate. Examples of drugs that are transition state analog inhibitors include flu medications such as the neuraminidase inhibitor oseltamivir and the HIV protease inhibitors saquinavir in the treatment of AIDS.

<span class="mw-page-title-main">Insulin-degrading enzyme</span> Mammalian protein found in Homo sapiens

Insulin-degrading enzyme, also known as IDE, is an enzyme.

<span class="mw-page-title-main">Proteinase K</span> Broad-spectrum serine protease

In molecular biology, Proteinase K is a broad-spectrum serine protease. The enzyme was discovered in 1974 in extracts of the fungus Parengyodontium album. Proteinase K is able to digest hair (keratin), hence, the name "Proteinase K". The predominant site of cleavage is the peptide bond adjacent to the carboxyl group of aliphatic and aromatic amino acids with blocked alpha amino groups. It is commonly used for its broad specificity. This enzyme belongs to Peptidase family S8 (subtilisin). The molecular weight of Proteinase K is 28,900 daltons.

<span class="mw-page-title-main">EGF-like domain</span> Protein domain named after the epidermal growth factor protein

The EGF-like domain is an evolutionary conserved protein domain, which derives its name from the epidermal growth factor where it was first described. It comprises about 30 to 40 amino-acid residues and has been found in a large number of mostly animal proteins. Most occurrences of the EGF-like domain are found in the extracellular domain of membrane-bound proteins or in proteins known to be secreted. An exception to this is the prostaglandin-endoperoxide synthase. The EGF-like domain includes 6 cysteine residues which in the epidermal growth factor have been shown to form 3 disulfide bonds. The structures of 4-disulfide EGF-domains have been solved from the laminin and integrin proteins. The main structure of EGF-like domains is a two-stranded β-sheet followed by a loop to a short C-terminal, two-stranded β-sheet. These two β-sheets are usually denoted as the major (N-terminal) and minor (C-terminal) sheets. EGF-like domains frequently occur in numerous tandem copies in proteins: these repeats typically fold together to form a single, linear solenoid domain block as a functional unit.

<span class="mw-page-title-main">Oligopeptidase</span> Enzymes that cleaves peptides but not proteins

An Oligopeptidase is an enzyme that cleaves peptides but not proteins. This property is due to its structure: the active site of this enzyme is located at the end of a narrow cavity which can only be reached by peptides.

<span class="mw-page-title-main">Kazal domain</span>

The Kazal domain is an evolutionary conserved protein domain usually indicative of serine protease inhibitors. However, kazal-like domains are also seen in the extracellular part of agrins, which are not known to be protease inhibitors.

Caricain is an enzyme. This enzyme catalyses the following chemical reaction: Hydrolysis of proteins with broad specificity for peptide bonds, similar to those of papain and chymopapain

Bacillolysin is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Beta-propeller phytase</span> Group of enzymes

β-propeller phytases (BPPs) are a group of enzymes (i.e. protein superfamily) with a round beta-propeller structure. BPPs are phytases, which means that they are able to remove (hydrolyze) phosphate groups from phytic acid and its phytate salts. Hydrolysis happens stepwise and usually ends in myo-inositol triphosphate product which has three phosphate groups still bound to it. The actual substrate of BPPs is calcium phytate and in order to hydrolyze it, BPPs must have Ca2+ ions bound to themselves. BPPs are the most widely found phytase superfamily in the environment and they are thought to have a major role in phytate-phosphorus cycling in soil and water. As their alternative name alkaline phytase suggests, BPPs work best in basic (or neutral) environment. Their pH optima is 6–9, which is unique among the phytases.

RopB transcriptional regulator, also known as RopB/Rgg transcriptional regulator is a transcriptional regulator protein that regulates expression of the extracellularly secreted cysteine protease streptococcal pyrogenic exotoxin B (speB) [See Also: erythrogenic toxins] which is an important virulence factor of Streptococcus pyogenes and is responsible for the dissemination of a host of infectious diseases including strep throat, impetigo, streptococcal toxic shock syndrome, necrotizing fasciitis, and scarlet fever. Functional studies suggest that the ropB multigene regulon is responsible for not only global regulation of virulence but also a wide range of functions from stress response, metabolic function, and two-component signaling. Structural studies implicate ropB's regulatory action being reliant on a complex interaction involving quorum sensing with the leaderless peptide signal speB-inducing peptide (SIP) acting in conjunction with a pH sensitive histidine switch.

References

  1. PDB: 3TMN ; Holden HM, Matthews BW (March 1988). "The binding of L-valyl-L-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis". J. Biol. Chem. 263 (7): 3256–60. doi:10.2210/pdb3tmn/pdb. PMID   3343246.
  2. Endo, S. (1962). "Studies on protease produced by thermophilic bacteria". J. Ferment. Technol. 40: 346–353.
  3. Tajima M, Urabe I, et al. (1976). "Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease". Eur. J. Biochem. 64 (1): 243–247. doi: 10.1111/j.1432-1033.1976.tb10293.x . PMID   819262.
  4. Trusek-Holownia A. (2003). "Synthesis of ZAlaPheOMe, the precursor of bitter dipeptide in the two-phase ethyl acetate-water system catalysed by thermolysin". J. Biotechnol. 102 (2): 153–163. doi:10.1016/S0168-1656(03)00024-5. PMID   12697393.
  5. Yasukawa K, Kusano M, Inouye K (2007). "A new method for the extracellular production of recombinant thermolysin by co-expressing the mature sequence and pro-sequence in Escherichia coli". Protein Eng. Des. Sel. 20 (8): 375–383. doi: 10.1093/protein/gzm031 . PMID   17616558.
  6. Inouye K, Kusano M, et al. (2007). Engineering, expression, purification, and production of recombinant thermolysin. Biotechnology Annual Review. Vol. 13. pp. 43–64. doi:10.1016/S1387-2656(07)13003-9. ISBN   978-0-444-53032-5. PMID   17875473.{{cite book}}: |journal= ignored (help)
  7. Holmes MA, Matthews BW (1982). "Structure of thermolysin refined at 1.6 A resolution". J. Mol. Biol. 160 (4): 623–639. doi:10.1016/0022-2836(82)90319-9. PMID   7175940.
  8. Matthews BW, Weaver LH, Kester WR (1974). "The conformation of thermolysin". J. Biol. Chem. 249 (24): 8030–8044. doi: 10.1016/S0021-9258(19)42067-X . PMID   4214815.
  9. 1 2 3 Eijsink VG, Veltman OR, et al. (1995). "Structural determinants of the stability of thermolysin-like proteinases". Nat. Struct. Biol. 2 (5): 374–379. doi:10.1038/nsb0595-374. PMID   7664094. S2CID   37785818.
  10. Dahlquist FW, Long JW, Bigbee WL (1976). "Role of Calcium in the thermal stability of thermolysin". Biochemistry. 15 (5): 1103–1111. doi:10.1021/bi00650a024. PMID   814920.
  11. Yagasaki, Makoto; Hashimoto, Shin-ichi (November 2008). "Synthesis and application of dipeptides; current status and perspectives". Applied Microbiology and Biotechnology. 81 (1): 13–22. doi:10.1007/s00253-008-1590-3. PMID   18795289. S2CID   10200090.
  12. Minde, David P.; Maurice, Madelon M.; Rüdiger, Stefan G. D. (2012). "Determining Biophysical Protein Stability in Lysates by a Fast Proteolysis Assay, FASTpp". PLOS ONE. 7 (10): e46147. Bibcode:2012PLoSO...746147M. doi: 10.1371/journal.pone.0046147 . PMC   3463568 . PMID   23056252.