Substrate analog

Last updated

Substrate analogs (substrate state analogues), are chemical compounds with a chemical structure that resemble the substrate molecule in an enzyme-catalyzed chemical reaction. Substrate analogs can act as competitive inhibitors of an enzymatic reaction. An example is phosphoramidate to the Tetrahymena group I ribozyme. [1] Other examples of substrate analogs include 5’-adenylyl-imidodiphosphate, a substrate analog of ATP, and 3-acetylpyridine adenine dinucleotide, a substrate analog of NADH. [2]

As a competitive inhibitor, substrate analogs occupy the same binding site as its analog, and decrease the intended substrate’s efficiency. [3] The maximum rate (Vmax) remains the same [4] while the intended substrate’s affinity (measured by the Michaelis constant KM) is decreased. [5] This means that less of the intended substrate will bind to the enzyme, resulting in less product being formed. In addition, the substrate analog may also be missing chemical components that allow the enzyme to go through with its reaction. This also causes the amount of product created to decrease.

Substrate analogs usually bind to the binding site reversibly. This means that the binding of the substrate analog to the enzyme’s binding site is non-permanent. The effect of the substrate analog can be nullified by increasing the concentration of the originally intended substrate. [6] There are also substrate analogs that bind to the binding site of an enzyme irreversibly. If this is the case, the substrate analog is called an inhibitory substrate analog, a suicide substrate, or a Trojan horse substrate. [7] An example of a substrate analog that is also a suicide substrate/Trojan horse substrate is penicillin, which is an inhibitory substrate analog of peptidoglycan. [8]

Some substrate analogs can still allow the enzyme to synthesize a product despite the enzyme’s inability to metabolize the substrate analog. These substrate analogs are known as gratuitous inducers. [9] An example of a substrate analog that is also a gratuitous inducer is IPTG (isopropyl β-D-1-thiogalactopyranoside), a substrate analog and gratuitous inducer of β-galactosidase activity. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Adenosine triphosphate</span> Energy-carrying molecule in living cells

Adenosine triphosphate (ATP) is a nucleotide that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known forms of life, it is often referred to as the "molecular unit of currency" for intracellular energy transfer.

<span class="mw-page-title-main">Chymotrypsin</span> Digestive enzyme

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum, where it performs proteolysis, the breakdown of proteins and polypeptides. Chymotrypsin preferentially cleaves peptide amide bonds where the side chain of the amino acid N-terminal to the scissile amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their side chain that fits into a hydrophobic pocket (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 side chain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme. Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine at the P1 position.

<span class="mw-page-title-main">Enzyme</span> Large biological molecule that acts as a catalyst

Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

<span class="mw-page-title-main">Furanose</span> Cyclic carbohydrate

A furanose is a collective term for carbohydrates that have a chemical structure that includes a five-membered ring system consisting of four carbon atoms and one oxygen atom. The name derives from its similarity to the oxygen heterocycle furan, but the furanose ring does not have double bonds.

<span class="mw-page-title-main">Binding site</span> Molecule-specific coordinate bonding area in biological systems

In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may include other proteins, enzyme substrates, second messengers, hormones, or allosteric modulators. The binding event is often, but not always, accompanied by a conformational change that alters the protein's function. Binding to protein binding sites is most often reversible, but can also be covalent reversible or irreversible.

<span class="mw-page-title-main">Cofactor (biochemistry)</span> Non-protein chemical compound or metallic ion

A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst. Cofactors can be considered "helper molecules" that assist in biochemical transformations. The rates at which these happen are characterized in an area of study called enzyme kinetics. Cofactors typically differ from ligands in that they often derive their function by remaining bound.

In organic chemistry, a tetrose is a monosaccharide with 4 carbon atoms. They have either an aldehyde functional group in position 1 (aldotetroses) or a ketone group in position 2 (ketotetroses).

Anaplerotic reactions, a term coined by Hans Kornberg and originating from the Greek ἀνά= 'up' and πληρόω= 'to fill', are chemical reactions that form intermediates of a metabolic pathway. Examples of such are found in the citric acid cycle. In normal function of this cycle for respiration, concentrations of TCA intermediates remain constant; however, many biosynthetic reactions also use these molecules as a substrate. Anaplerosis is the act of replenishing TCA cycle intermediates that have been extracted for biosynthesis.

The peptidyl transferase is an aminoacyltransferase as well as the primary enzymatic function of the ribosome, which forms peptide bonds between adjacent amino acids using tRNAs during the translation process of protein biosynthesis. The substrates for the peptidyl transferase reaction are two tRNA molecules, one bearing the growing peptide chain and the other bearing the amino acid that will be added to the chain. The peptidyl chain and the amino acids are attached to their respective tRNAs via ester bonds to the O atom at the CCA-3' ends of these tRNAs. Peptidyl transferase is an enzyme that catalyzes the addition of an amino acid residue in order to grow the polypeptide chain in protein synthesis. It is located in the large ribosomal subunit, where it catalyzes the peptide bond formation. It is composed entirely of RNA. The alignment between the CCA ends of the ribosome-bound peptidyl tRNA and aminoacyl tRNA in the peptidyl transferase center contribute to its ability to catalyze these reactions. This reaction occurs via nucleophilic displacement. The amino group of the aminoacyl tRNA attacks the terminal carboxyl group of the peptidyl tRNA. Peptidyl transferase activity is carried out by the ribosome. Peptidyl transferase activity is not mediated by any ribosomal proteins but by ribosomal RNA (rRNA), a ribozyme. Ribozymes are the only enzymes which are not made up of proteins, but ribonucleotides. All other enzymes are made up of proteins. This RNA relic is the most significant piece of evidence supporting the RNA World hypothesis.

Non-competitive inhibition is a type of enzyme inhibition where the inhibitor reduces the activity of the enzyme and binds equally well to the enzyme whether or not it has already bound the substrate. This is unlike competitive inhibition, where binding affinity for the substrate in the enzyme is decreased in the presence of an inhibitor.

<span class="mw-page-title-main">Pyruvate decarboxylase</span> Class of enzymes

Pyruvate decarboxylase is an enzyme that catalyses the decarboxylation of pyruvic acid to acetaldehyde. It is also called 2-oxo-acid carboxylase, alpha-ketoacid carboxylase, and pyruvic decarboxylase. In anaerobic conditions, this enzyme participates in the fermentation process that occurs in yeast, especially of the genus Saccharomyces, to produce ethanol by fermentation. It is also present in some species of fish where it permits the fish to perform ethanol fermentation when oxygen is scarce. Pyruvate decarboxylase starts this process by converting pyruvate into acetaldehyde and carbon dioxide. Pyruvate decarboxylase depends on cofactors thiamine pyrophosphate (TPP) and magnesium. This enzyme should not be mistaken for the unrelated enzyme pyruvate dehydrogenase, an oxidoreductase, that catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA.

<span class="mw-page-title-main">Enzyme kinetics</span> Study of biochemical reaction rates catalysed by an enzyme

Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or a modifier might affect the rate.

<span class="mw-page-title-main">Enzyme inhibitor</span> Molecule that blocks enzyme activity

An enzyme inhibitor is a molecule that binds to an enzyme and blocks its activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which substrate molecules are converted into products. An enzyme facilitates a specific chemical reaction by binding the substrate to its active site, a specialized area on the enzyme that accelerates the most difficult step of the reaction.

<span class="mw-page-title-main">Enzyme catalysis</span> Catalysis of chemical reactions by enzymes

Enzyme catalysis is the increase in the rate of a process by a biological molecule, an "enzyme". Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

Transition state analogs, are chemical compounds with a chemical structure that resembles the transition state of a substrate molecule in an enzyme-catalyzed chemical reaction. Enzymes interact with a substrate by means of strain or distortions, moving the substrate towards the transition state. Transition state analogs can be used as inhibitors in enzyme-catalyzed reactions by blocking the active site of the enzyme. Theory suggests that enzyme inhibitors which resembled the transition state structure would bind more tightly to the enzyme than the actual substrate. Examples of drugs that are transition state analog inhibitors include flu medications such as the neuraminidase inhibitor oseltamivir and the HIV protease inhibitors saquinavir in the treatment of AIDS.

<span class="mw-page-title-main">Fructose 2,6-bisphosphate</span> Chemical compound

Fructose 2,6-bisphosphate, abbreviated Fru-2,6-P2, is a metabolite that allosterically affects the activity of the enzymes phosphofructokinase 1 (PFK-1) and fructose 1,6-bisphosphatase (FBPase-1) to regulate glycolysis and gluconeogenesis. Fru-2,6-P2 itself is synthesized and broken down in either direction by the integrated bifunctional enzyme phosphofructokinase 2 (PFK-2/FBPase-2), which also contains a phosphatase domain and is also known as fructose-2,6-bisphosphatase. Whether the kinase and phosphatase domains of PFK-2/FBPase-2 are active or inactive depends on the phosphorylation state of the enzyme.

<span class="mw-page-title-main">Uridine diphosphate galactose</span> Chemical compound

Uridine diphosphate galactose (UDP-galactose) is an intermediate in the production of polysaccharides. It is important in nucleotide sugars metabolism, and is the substrate for the transferase B4GALT5.

<span class="mw-page-title-main">Deoxyuridine monophosphate</span> Chemical compound

Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide.

<span class="mw-page-title-main">Fluorocitric acid</span> Chemical compound

Fluorocitric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)(CHFCO2H). It is a fluorinated carboxylic acid derived from citric acid by substitution of one methylene hydrogen by a fluorine atom. The appropriate anion is called fluorocitrate. Fluorocitrate is formed in two steps from fluoroacetate. Fluoroacetate is first converted to fluoroacetyl-CoA by acetyl-CoA synthetase in the mitochondria. Then fluoroacetyl-CoA condenses with oxaloacetate to form fluorocitrate. This step is catalyzed by citrate synthase. Flurocitrate is a metabolite of fluoroacetic acid and is very toxic because it is not processable using aconitase in the citrate cycle. The enzyme is inhibited and the cycle stops working.

<span class="mw-page-title-main">Competitive inhibition</span> Interruption of a chemical pathway

Competitive inhibition is interruption of a chemical pathway owing to one chemical substance inhibiting the effect of another by competing with it for binding or bonding. Any metabolic or chemical messenger system can potentially be affected by this principle, but several classes of competitive inhibition are especially important in biochemistry and medicine, including the competitive form of enzyme inhibition, the competitive form of receptor antagonism, the competitive form of antimetabolite activity, and the competitive form of poisoning.

References

  1. Hanna, Raven L.; Gryaznov, Sergei M.; Doudna, Jennifer A. (2000-11-01). "A phosphoramidate substrate analog is a competitive inhibitor of the Tetrahymena group I ribozyme". Chemistry & Biology. 7 (11): 845–854. doi: 10.1016/S1074-5521(00)00033-8 . ISSN   1074-5521. PMID   11094338.
  2. Stein, Ross L. Kinetics of Enzyme Action: Essential Principles for Drug Hunters. Hoboken, NJ: John Wiley, 2011. Print. p185. ISBN   9780470414118
  3. Garrett, Reginald H.; Grisham, Charles M. (2013). Biochemistry (5th ed. ed.). Belmont, CA: Brooks/Cole, Cengage Learning. p. 108. ISBN   9781133106296
  4. Garrett, Reginald H.; Grisham, Charles M. (2013). Biochemistry (5th ed. ed.). Belmont, CA: Brooks/Cole, Cengage Learning. p. 108. ISBN   9781133106296
  5. Cannon, Joseph G. Pharmacology for Chemists. Oxford: Oxford UP, 2007. Print. p70. ISBN   9780841239272
  6. Cannon, Joseph G. Pharmacology for Chemists. Oxford: Oxford UP, 2007. Print. p70. ISBN   9780841239272
  7. Garrett, Reginald H.; Grisham, Charles M. (2013). Biochemistry (5th ed. ed.). Belmont, CA: Brooks/Cole, Cengage Learning. p. 108. ISBN   9781133106296
  8. Garrett, Reginald H.; Grisham, Charles M. (2013). Biochemistry (5th ed. ed.). Belmont, CA: Brooks/Cole, Cengage Learning. p. 108. ISBN   9781133106296
  9. Garrett, Reginald H.; Grisham, Charles M. (2013). Biochemistry (5th ed. ed.). Belmont, CA: Brooks/Cole, Cengage Learning. p. 108. ISBN   9781133106296
  10. Garrett, Reginald H.; Grisham, Charles M. (2013). Biochemistry (5th ed. ed.). Belmont, CA: Brooks/Cole, Cengage Learning. p. 108. ISBN   9781133106296