Carbendazim

Last updated
Carbendazim [1]
Carbendazim Structural Formulae V.1.svg
Names
Preferred IUPAC name
Methyl (1H-1,3-benzimidazol-2-yl)carbamate
Other names
Mercarzole
Carbendazole
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.031.108 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
RTECS number
  • DD6500000
UNII
  • InChI=1S/C9H9N3O2/c1-14-9(13)12-8-10-6-4-2-3-5-7(6)11-8/h2-5H,1H3,(H2,10,11,12,13) Yes check.svgY
    Key: TWFZGCMQGLPBSX-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C9H9N3O2/c1-14-9(13)12-8-10-6-4-2-3-5-7(6)11-8/h2-5H,1H3,(H2,10,11,12,13)
    Key: TWFZGCMQGLPBSX-UHFFFAOYAS
  • COC(=O)Nc2nc1ccccc1[nH]2
Properties
C9H9N3O2
Molar mass 191.187 g/mol
AppearanceWhite to light gray powder
Density 1.45 g/cm3
Melting point 302 to 307 °C (576 to 585 °F; 575 to 580 K) (decomposes)
8 mg/L

Disintegration = 302 -305 degree Temperature of disintegration = 1.5 - 2 hrs

Contents

Acidity (pKa)4.48
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
Disintegration temp = 302 - 305 degree

Disintegration temp = 1.5 - 2 hrs

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Carbendazim is a fungicide, a member benzimidazole fungicides. It is a metabolite of benomyl. [2]

The fungicide is used to control plant diseases in cereals and fruits, including citrus, bananas, strawberries, macadamia nuts, pineapples, and pomes. [3] A 4.7% solution of carbendazim hydrochloride, sold as Eertavas, is marketed as a treatment for Dutch elm disease. [4]

Other uses

It is also employed as a casting worm control agent in amenity turf situations such as golf greens, tennis courts etc. and in some countries is licensed for that use only. [5]

Safety, regulation, controversy

High doses of carbendazim destroy the testicles of laboratory animals. [6] [7]

Maximum pesticide residue limits (MRLs) for fresh produce in the EU are between 0.1 and 0.7 mg/kg with the exception of loquat fruits, which is set at 2 mg/kg. [8] The limits for more commonly consumed citrus and pome fruits are between 0.1 and 0.2 mg/kg.

Use of this fungicide on macadamia plantations has proven controversial in Queensland. [4]

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are used as plant protection products, which in general protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Citrus production</span> Cultivation or planting of citrus fruits

Citrus production encompasses the production of citrus fruit, which are the highest-value fruit crop in terms of international trade. There are two main markets for citrus fruit:

Fungicides are pesticides used to kill parasitic fungi or their spores. Fungi can cause serious damage in agriculture, resulting in losses of yield and quality. Fungicides are used both in agriculture and to fight fungal infections in animals. Fungicides are also used to control oomycetes, which are not taxonomically/genetically fungi, although sharing similar methods of infecting plants. Fungicides can either be contact, translaminar or systemic. Contact fungicides are not taken up into the plant tissue and protect only the plant where the spray is deposited. Translaminar fungicides redistribute the fungicide from the upper, sprayed leaf surface to the lower, unsprayed surface. Systemic fungicides are taken up and redistributed through the xylem vessels. Few fungicides move to all parts of a plant. Some are locally systemic, and some move upward.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

<span class="mw-page-title-main">Atrazine</span> Herbicide

Atrazine is a chlorinated herbicide of the triazine class. It is used to prevent pre-emergence broadleaf weeds in crops such as maize (corn), soybean and sugarcane and on turf, such as golf courses and residential lawns. Atrazine's primary manufacturer is Syngenta and it is one of the most widely used herbicides in the United States, Canadian, and Australian agriculture. Its use was banned in the European Union in 2004, when the EU found groundwater levels exceeding the limits set by regulators, and Syngenta could not show that this could be prevented nor that these levels were safe.

<span class="mw-page-title-main">Benomyl</span> Chemical compound

Benomyl is a fungicide introduced in 1968 by DuPont. It is a systemic benzimidazole fungicide that is selectively toxic to microorganisms and invertebrates, but relatively nontoxic toward mammals.

<span class="mw-page-title-main">Vinclozolin</span> Fungicide used on fruits and vegetables

Vinclozolin is a common dicarboximide fungicide used to control diseases, such as blights, rots and molds in vineyards, and on fruits and vegetables such as raspberries, lettuce, kiwi, snap beans, and onions. It is also used on turf on golf courses. Two common fungi that vinclozolin is used to protect crops against are Botrytis cinerea and Sclerotinia sclerotiorum. First registered in 1981, vinclozolin is widely used but its overall application has declined. As a pesticide, vinclozolin is regulated by the United States Environmental Protection Agency. In addition to these restrictions within the United States, as of 2006 the use of this pesticide was banned in several countries, including Denmark, Finland, Norway, and Sweden. It has gone through a series of tests and regulations in order to evaluate the risks and hazards to the environment and animals. Among the research, a main finding is that vinclozolin has been shown to be an endocrine disruptor with antiandrogenic effects.

A Biopesticide is a biological substance or organism that damages, kills, or repels organisms seens as pests. Biological pest management intervention involves predatory, parasitic, or chemical relationships.

<span class="mw-page-title-main">Diquat</span> Chemical compound

Diquat is the ISO common name for an organic dication that, as a salt with counterions such as bromide or chloride is used as a contact herbicide that produces desiccation and defoliation. Diquat is no longer approved for use in the European Union, although its registration in many other countries including the USA is still valid.

<span class="mw-page-title-main">Glufosinate</span> Broad-spectrum herbicide

Glufosinate is a naturally occurring broad-spectrum herbicide produced by several species of Streptomyces soil bacteria. Glufosinate is a non-selective, contact herbicide, with some systemic action. Plants may also metabolize bialaphos and phosalacine, other naturally occurring herbicides, directly into glufosinate. The compound irreversibly inhibits glutamine synthetase, an enzyme necessary for the production of glutamine and for ammonia detoxification, giving it antibacterial, antifungal and herbicidal properties. Application of glufosinate to plants leads to reduced glutamine and elevated ammonia levels in tissues, halting photosynthesis and resulting in plant death.

<span class="mw-page-title-main">Metalaxyl</span> Chemical compound

Metalaxyl is an acylalanine fungicide with systemic function. Its chemical name is methyl N-(methoxyacetyl)-N-(2,6-xylyl)-DL-alaninate. It can be used to control Pythium in a number of vegetable crops, and Phytophthora in peas. Metalaxyl-M is the ISO common name and Ridomil Gold is the trade name for the optically pure (-) / D / R active stereoisomer, which is also known as mefenoxam.

<span class="mw-page-title-main">2-Phenylphenol</span> Chemical compound

2-Phenylphenol, or o-phenylphenol, is an organic compound. In terms of structure, it is one of the monohydroxylated isomers of biphenyl. It is a white solid. It is a biocide used as a preservative with E number E231 and under the trade names Dowicide, Torsite, Fungal, Preventol, Nipacide and many others.

Acibenzolar-<i>S</i>-methyl Chemical compound

Acibenzolar-S-methyl is the ISO common name for an organic compound that is used as a fungicide. Unusually, it is not directly toxic to fungi but works by inducing systemic acquired resistance, the natural defence system of plants.

<span class="mw-page-title-main">Azoxystrobin</span> Chemical compound

Azoxystrobin is a broad spectrum systemic fungicide widely used in agriculture to protect crops from fungal diseases. It was first marketed in 1996 using the brand name Amistar and by 1999 it had been registered in 48 countries on more than 50 crops. In the year 2000 it was announced that it had been granted UK Millennium product status.

<span class="mw-page-title-main">Enilconazole</span> Chemical compound

Enilconazole is a fungicide widely used in agriculture, particularly in the growing of citrus fruits. Trade names include Freshgard, Fungaflor, and Nuzone.

<span class="mw-page-title-main">Chlormequat</span> Chemical compound

Chlormequat is an organic compound with the formula ClCH
2
CH
2
N(CH
3
)+
3
that is used as a plant growth regulator. It is typically sold as the chloride salt, chlormequat chloride (C5H13Cl2N), a colorless hygroscopic crystalline substance that is soluble in water and ethanol. It is an alkylating agent and a quaternary ammonium salt. Chlormequat is one of the onium-type growth regulators.

<span class="mw-page-title-main">Propamocarb</span> Chemical compound

Propamocarb is a systemic fungicide used for control of soil, root and leaf disease caused by oomycetes. It is used by watering or spraying. Propamocarb is absorbed and distributed through the plant's tissue.

<span class="mw-page-title-main">Citrus black spot</span> Fungal disease that affects citrus fruit

Citrus black spot is a fungal disease caused by Phyllosticta citricarpa(previously known as Guignardia citricarpa). This Ascomycete fungus affects citrus plants throughout subtropical climates, causing a reduction in both fruit quantity and quality.

<span class="mw-page-title-main">Cyproconazole</span> Chemical compound

Cyproconazole is an agricultural fungicide of the class of azoles, used on cereal crops, coffee, sugar beet, fruit trees and grapes, and peanuts, on sod farms and golf course turf and on wood as a preservative. It has been used against powdery mildew, rust on cereals and apple scab, and applied by air or on the ground or by chemigation.

<i>Penicillium digitatum</i> Species of fungus

Penicillium digitatum is a mesophilic fungus found in the soil of citrus-producing areas. It is a major source of post-harvest decay in fruits and is responsible for the widespread post-harvest disease in Citrus fruit known as green rot or green mould. In nature, this necrotrophic wound pathogen grows in filaments and reproduces asexually through the production of conidiophores and conidia. However, P. digitatum can also be cultivated in the laboratory setting. Alongside its pathogenic life cycle, P. digitatum is also involved in other human, animal and plant interactions and is currently being used in the production of immunologically based mycological detection assays for the food industry.

References

  1. Merck Index, 11th Edition, 1794.
  2. Dreikorn, Barry A.; Owen, W. John (2000). "Fungicides, Agricultural". Kirk-Othmer Encyclopedia of Chemical Technology. doi:10.1002/0471238961.0621140704180509.a01. ISBN   978-0-471-48494-3.
  3. Wight, Andrew (14 January 2009). "Two-headed fish mystery deepens". Stock & Land. Archived from the original on 19 October 2009.
  4. 1 2 Marissa Calligeros (2009-02-02). "Fungicide maker in birth defect storm". Sydney Morning Herald . Retrieved 2010-03-21.
  5. "Getting the best worm control".
  6. Aire, TA (August 2005). "Short-term effects of carbendazim on the gross and microscopic features of the testes of Japanese quails (Coturnix coturnix japonica)". Anatomy and Embryology. 210 (1): 43–9. doi:10.1007/s00429-005-0001-0. PMID   16034611. S2CID   8526462.
  7. "Carbendazim use banned on fruit crops". ABC. 5 February 2010.
  8. "EU Pesticides Database" . Retrieved 24 February 2012.