Isoxathion

Last updated
Isoxathion
Isoxathion Formula V.2.svg
Isoxathion-3D-balls.png
Names
Preferred IUPAC name
O,O-Diethyl O-(5-phenyl-1,2-oxazol-3-yl) phosphorothioate
Other names
O,O-Diethyl O-(5-phenyl-3-isoxazolyl) phosphorothioate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.038.734 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C13H16NO4PS/c1-3-15-19(20,16-4-2)18-13-10-12(17-14-13)11-8-6-5-7-9-11/h5-10H,3-4H2,1-2H3 Yes check.svgY
    Key: SDMSCIWHRZJSRN-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C13H16NO4PS/c1-3-15-19(20,16-4-2)18-13-10-12(17-14-13)11-8-6-5-7-9-11/h5-10H,3-4H2,1-2H3
    Key: SDMSCIWHRZJSRN-UHFFFAOYAE
  • S=P(Oc2noc(c1ccccc1)c2)(OCC)OCC
Properties
C13H16NO4PS
Molar mass 313.31 g/mol
AppearanceYellowish liquid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Isoxathion is a molecular chemical with the molecular formula C13H16NO4PS. It is an insecticide, specifically an isoxazole organothiophosphate insecticide.

Related Research Articles

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are substances used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Azadirachtin</span> Chemical compound

Azadirachtin, a chemical compound belonging to the limonoid group, is a secondary metabolite present in neem seeds. It is a highly oxidized tetranortriterpenoid which boasts a plethora of oxygen-bearing functional groups, including an enol ether, acetal, hemiacetal, tetra-substituted epoxide and a variety of carboxylic esters.

<span class="mw-page-title-main">Fenvalerate</span> Chemical compound

Fenvalerate is a synthetic pyrethroid insecticide. It is a mixture of four optical isomers which have different insecticidal activities. The 2-S alpha configuration, known as esfenvalerate, is the most insecticidally active isomer. Fenvalerate consists of about 23% of this isomer.

<span class="mw-page-title-main">Triatominae</span> Subfamily of true bugs

The members of the Triatominae, a subfamily of the Reduviidae, are also known as conenose bugs, kissing bugs, or vampire bugs. Other local names for them used in The Americas include barbeiros, vinchucas, pitos, chipos and chinches. Most of the 130 or more species of this subfamily feed on vertebrate blood; a very few species feed on invertebrates. They are mainly found and widespread in the Americas, with a few species present in Asia, Africa, and Australia. These bugs usually share shelter with nesting vertebrates, from which they suck blood. In areas where Chagas disease occurs, all triatomine species are potential vectors of the Chagas disease parasite Trypanosoma cruzi, but only those species that are well adapted to living with humans are considered important vectors. Also, proteins released from their bites have been known to induce anaphylaxis in sensitive and sensitized individuals.

<span class="mw-page-title-main">Pyrazolopyrimidine</span> Chemical compound

Pyrazolopyrimidines are a series of isomeric heterocyclic chemical compounds with the molecular formula C6H5N3. They form the central core of a variety of more complex chemical compounds including some pharmaceuticals and pesticides.

<span class="mw-page-title-main">Fipronil</span> Chemical compound

Fipronil is a broad-spectrum insecticide that belongs to the phenylpyrazole chemical family. Fipronil disrupts the insect central nervous system by blocking the ligand-gated ion channel of the GABAA receptor and glutamate-gated chloride (GluCl) channels. This causes hyperexcitation of contaminated insects' nerves and muscles. Fipronil's specificity towards insects is believed to be due to its greater binding affinity to the GABAA receptors of insects, than to those of mammals, and to its action on GluCl channels, which do not exist in mammals. As of 2017, there did not appear to be significant resistance among fleas to fipronil.

<span class="mw-page-title-main">Allethrins</span> Class of synthetic chemicals used as insecticides

The allethrins are a group of related synthetic compounds used in insecticides. They are classified as pyrethroids, i.e. synthetic versions of pyrethrin, a chemical with insecticidal properties found naturally in Chrysanthemum flowers. They were first synthesized in the United States by Milton S. Schechter in 1949. Allethrin was the first pyrethroid.

<span class="mw-page-title-main">Tetramethrin</span> Chemical compound

Tetramethrin is a potent synthetic insecticide in the pyrethroid family. It is a white crystalline solid with a melting point of 65-80 °C. The commercial product is a mixture of stereoisomers.

<span class="mw-page-title-main">Phosmet</span> Organophosphate non-systemic insecticide

Phosmet is a phthalimide-derived, non-systemic, organophosphate insecticide used on plants and animals. It is mainly used on apple trees for control of codling moth, though it is also used on a wide range of fruit crops, ornamentals, and vines for the control of aphids, suckers, mites, and fruit flies.

<span class="mw-page-title-main">Ryanodine</span> Chemical compound

Ryanodine is a poisonous diterpenoid found in the South American plant Ryania speciosa (Salicaceae). It was originally used as an insecticide.

<span class="mw-page-title-main">Nitenpyram</span> Insecticide

Nitenpyram is a chemical frequently used as an insecticide in agriculture and veterinary medicine. The compound is an insect neurotoxin belonging to the class of neonicotinoids which works by blocking neural signaling of the central nervous system. It does so by binding irreversibly to the nicotinic acetylcholine receptor (nACHr) causing a stop of the flow of ions in the postsynaptic membrane of neurons leading to paralysis and death. Nitenpyram is highly selective towards the variation of the nACHr which insects possess, and has seen extensive use in targeted, insecticide applications.

<span class="mw-page-title-main">John E. Casida</span> American entomologist (1929–2018)

John Edward Casida was an American entomologist, toxicologist and professor at the University of California, Berkeley.

<span class="mw-page-title-main">Delta endotoxin</span> Group of insecticidal toxins produced by the bacteria Bacillus thuringiensis

Delta endotoxins (δ-endotoxins) are pore-forming toxins produced by Bacillus thuringiensis species of bacteria. They are useful for their insecticidal action and are the primary toxin produced by Bt maize/corn. During spore formation the bacteria produce crystals of such proteins that are also known as parasporal bodies, next to the endospores; as a result some members are known as a parasporin. The Cyt (cytolytic) toxin group is a group of delta-endotoxins different from the Cry group.

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

omega-Atracotoxin (ω-atracotoxin) is an insect-specific neurotoxin produced by the Blue Mountains funnel-web spider. Its phylogenetic specificity derives from its ability to antagonise insect, but not vertebrate, voltage-gated calcium channels. Two spatially proximal amino acid residues, Asn(27) and Arg(35), form a contiguous molecular surface that is essential for toxin activity. It has been proposed that this surface of the beta-hairpin is a key site for interaction of the toxin with insect calcium channels.

<span class="mw-page-title-main">Phosfolan</span> Chemical compound

Phosfolan (chemical formula: C7H14NO3PS2) is a chemical compound used as an insecticide.

<span class="mw-page-title-main">Aminocarb</span> Chemical compound

Animocarb (Matacil) is an organic chemical compound with the molecular formula C11H16N2O2. It has a colorless or white crystal-like appearance and is most commonly used as an insecticide.

<span class="mw-page-title-main">Janet Hemingway</span> British infectious diseases specialist

Janet Hemingway is a British infectious diseases specialist. She is the former Director of Liverpool School of Tropical Medicine (LSTM) and founding Director of Infection Innovation Consortium and Professor of Tropical Medicine at LSTM. She is current President of the Royal Society of Tropical Medicine and Hygiene.

<span class="mw-page-title-main">Mipafox</span> Chemical compound

Mipafox is a highly toxic organophosphate insecticide that can cause delayed neurotoxicity and paralysis. It is an irreversible acetylcholinesterase inhibitor that is resistant to oxime reactivators.

Cytochrome P450, family 9, also known as CYP9, is a cytochrome P450 family found in Insect genome, CYP9 and insect CYP6 family belong to the same clan as mammalian CYP3 and CYP5 families. The first gene identified in this family is the CYP9A1 from the Heliothis virescens, which is involved in thiodicarb insecticide resistance. Subfamily CYP9A in Lepidopteran play important roles in insecticide resistance, can metabolize esfenvalerate efficiently.

References