Cyromazine

Last updated
Cyromazine [1]
Cyromazine Structural formula V1.svg
Names
IUPAC name
N-Cyclopropyl-1,3,5-triazine-2,4,6-triamine
Other names
Citation
Larvadex
Trigard
Vetrazin
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.060.215 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C6H10N6/c7-4-10-5(8)12-6(11-4)9-3-1-2-3/h3H,1-2H2,(H5,7,8,9,10,11,12) X mark.svgN
    Key: LVQDKIWDGQRHTE-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C6H10N6/c7-4-10-5(8)12-6(11-4)9-3-1-2-3/h3H,1-2H2,(H5,7,8,9,10,11,12)
    Key: LVQDKIWDGQRHTE-UHFFFAOYAC
  • Nc1nc(N)nc(NC2CC2)n1
Properties
C6H10N6
Molar mass 166.19 g/mol
AppearanceCrystalline
Melting point 219 to 222 °C (426 to 432 °F; 492 to 495 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Cyromazine is a triazine insect growth regulator used as an insecticide to control dipterans and some other insects. It is a cyclopropyl derivative of melamine. The exact mechanism of action of cyromazine against insects is unclear although it does affect the larval and pupal cuticles. [2]

In veterinary medicine, cyromazine is used as an ectoparasiticide. It has been used since 1979 in Australia and New Zealand to control and prevent flystrike of sheep by blowfly. [3] The exact mechanism of action has not been determined, but it is non-toxic to mammals and does not target the nervous system. [3] It is not toxic to adult flies, only having its effect on larval forms by disrupting the moulting process. It can give 8-10 weeks protection when applied topically. [4] Because of this it has little effect on existing infestations and is commonly used prophylactically. In 2011 resistance was detected in Lucilia cuprina to cyromazine from infested sheep that failed to be protected following treatment. [5]

Regulation

The Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA) provides a test method for analyzing cyromazine and melamine in animal tissues in its Chemistry Laboratory Guidebook which "contains test methods used by FSIS Laboratories to support the Agency's inspection program, ensuring that meat, poultry, and egg products are safe, wholesome and accurately labeled." [6] [7] In 1999, in a proposed rule published in the Federal Register regarding cyromazine residue, the United States Environmental Protection Agency (EPA) proposed "remov[ing] melamine, a metabolite of cyromazine from the tolerance expression since it is no longer considered a residue of concern." [8]

Related Research Articles

<span class="mw-page-title-main">Trichinosis</span> Parasitic disease due to invasion by Trichinella spp.

Trichinosis, also known as trichinellosis, is a parasitic disease caused by roundworms of the Trichinella genus. During the initial infection, invasion of the intestines can result in diarrhea, abdominal pain, and vomiting. Migration of larvae to muscle, which occurs about a week after being infected, can cause swelling of the face, inflammation of the whites of the eyes, fever, muscle pains, and a rash. Minor infection may be without symptoms. Complications may include inflammation of heart muscle, central nervous system involvement, and inflammation of the lungs.

<span class="mw-page-title-main">Melamine</span> Fire-resistant chemical used in dinnerware, insulation, and cleaning products

Melamine is an organic compound with the formula C3H6N6. This white solid is a trimer of cyanamide, with a 1,3,5-triazine skeleton. Like cyanamide, it contains 66% nitrogen by mass, and its derivatives have fire-retardant properties due to its release of nitrogen gas when burned or charred. Melamine can be combined with formaldehyde and other agents to produce melamine resins. Such resins are characteristically durable thermosetting plastic used in high pressure decorative laminates such as Formica, melamine dinnerware including cooking utensils, plates, plastic products, laminate flooring, and dry erase boards. Melamine foam is used as insulation, soundproofing material and in polymeric cleaning products, such as Magic Eraser.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

<span class="mw-page-title-main">Myiasis</span> Infestation of parasitic maggots

Myiasis, also known as flystrike or fly strike, is the parasitic infestation of the body of a live animal by fly larvae (maggots) that grow inside the host while feeding on its tissue. Although flies are most commonly attracted to open wounds and urine- or feces-soaked fur, some species can create an infestation even on unbroken skin. Non-myiatic flies can be responsible for accidental myiasis.

<i>Haemonchus contortus</i> Species of roundworm

Haemonchus contortus, also known as the barber's pole worm, is a very common parasite and one of the most pathogenic nematodes of ruminants. Adult worms attach to abomasal mucosa and feed on the blood. This parasite is responsible for anemia, oedema, and death of infected sheep and goats, mainly during summer in warm, humid climates.

<span class="mw-page-title-main">Common green bottle fly</span> Species of insect

The common green bottle fly is a blowfly found in most areas of the world and is the most well-known of the numerous green bottle fly species. Its body is 10–14 mm (0.39–0.55 in) in length – slightly larger than a house fly – and has brilliant, metallic, blue-green or golden coloration with black markings. It has short, sparse, black bristles (setae) and three cross-grooves on the thorax. The wings are clear with light brown veins, and the legs and antennae are black. The larvae of the fly may be used for maggot therapy, are commonly used in forensic entomology, and can be the cause of myiasis in livestock and pets. The common green bottle fly emerges in the spring for mating.

<span class="mw-page-title-main">Spinosad</span> Insecticide

Spinosad is an insecticide based on chemical compounds found in the bacterial species Saccharopolyspora spinosa. The genus Saccharopolyspora was discovered in 1985 in isolates from crushed sugarcane. The bacteria produce yellowish-pink aerial hyphae, with bead-like chains of spores enclosed in a characteristic hairy sheath. This genus is defined as aerobic, Gram-positive, nonacid-fast actinomycetes with fragmenting substrate mycelium. S. spinosa was isolated from soil collected inside a nonoperational sugar mill rum still in the Virgin Islands. Spinosad is a mixture of chemical compounds in the spinosyn family that has a generalized structure consisting of a unique tetracyclic ring system attached to an amino sugar (D-forosamine) and a neutral sugar (tri-Ο-methyl-L-rhamnose). Spinosad is relatively nonpolar and not easily dissolved in water.

In China, the adulteration and contamination of several food and feed ingredients with inexpensive melamine and other compounds, such as cyanuric acid, ammeline and ammelide, are common practice. These adulterants can be used to inflate the apparent protein content of products, so that inexpensive ingredients can pass for more expensive, concentrated proteins. Melamine by itself has not been thought to be very toxic to animals or humans except possibly in very high concentrations, but the combination of melamine and cyanuric acid has been implicated in kidney failure. Reports that cyanuric acid may be an independently and potentially widely used adulterant in China have heightened concerns for both animal and human health.

<i>Cochliomyia</i> Genus of insects

Cochliomyia is a genus in the family Calliphoridae, known as blowflies, in the order Diptera. Cochliomyia is commonly referred to as the New World screwworm flies, as distinct from Old World screwworm flies. Four species are in this genus: C. macellaria, C. hominivorax, C. aldrichi, and C. minima. C. hominivorax is known as the primary screwworm because its larvae produce myiasis and feed on living tissue. This feeding causes deep, pocket-like lesions in the skin, which can be very damaging to the animal host. C. macellaria is known as the secondary screwworm because its larvae produce myiasis, but feed only on necrotic tissue. Both C. hominivorax and C. macellaria thrive in warm, tropical areas.

<i>Chrysomya albiceps</i> Species of fly

Chrysomya albiceps is a species belonging to the blow fly family, Calliphoridae.

<i>Chrysomya megacephala</i> Species of fly

Chrysomya megacephala, more commonly known as the oriental latrine fly or oriental blue fly, is a member of the family Calliphoridae (blowflies). It is a warm-weather fly with a greenish-blue metallic box-like body. The fly infests corpses soon after death, making it important to forensic science. This fly is implicated in some public health issues; it can be the cause of myiasis, and also infects fish and livestock.

<i>Lucilia cuprina</i> Species of fly

Lucilia cuprina, formerly named Phaenicia cuprina, the Australian sheep blowfly is a blow fly in the family Calliphoridae. It causes the condition known as "sheep strike"'. The female fly locates a sheep with ideal conditions, such as an open wound or a build-up of faeces or urine in the wool, in which she lays her eggs. The emerging larvae cause large lesions on the sheep, which may prove to be fatal.

<i>Muscina</i> Genus of flies

Muscina is a genus of flies that belongs to the family Muscidae, currently consisting of 27 species. They are worldwide in distribution and are frequently found in livestock facilities and outside restrooms. The most common species are M. stabulans, M. levida, and M. prolapsa. Muscina flies commonly breed in manure and defecate on food, which has been linked to the spread of some disease and illnesses. The occurrence of Muscina larvae on dead bodies has led to their regular use in forensic investigations, as they may be used to estimate the time of death. Research have shown the prevalence of certain species of Muscina flies as vectors of diseases such as poliomyelitis.

Adulteration is a legal offense and when the food fails to meet the legal standards set by the government, it is said to have been Adulterated Food. One form of adulteration is the addition of another substance to a food item in order to increase the quantity of the food item in raw form or prepared form, which results in the loss of the actual quality of the food item. These substances may be either available food items or non-food items. Among meat and meat products some of the items used to adulterate are water or ice, carcasses, or carcasses of animals other than the animal meant to be consumed. In the case of seafood, adulteration may refer to species substitution (mislabeling), which replaces the species identified on the product label with another species, or undisclosed processing methods, in which treatments such as additives, excessive glazing, or short-weighting are not disclosed to the consumer.

<span class="mw-page-title-main">Ticks of domestic animals</span>

Ticks of domestic animals directly cause poor health and loss of production to their hosts. Ticks also transmit numerous kinds of viruses, bacteria, and protozoa between domestic animals. These microbes cause diseases which can be severely debilitating or fatal to domestic animals, and may also affect humans. Ticks are especially important to domestic animals in tropical and subtropical countries, where the warm climate enables many species to flourish. Also, the large populations of wild animals in warm countries provide a reservoir of ticks and infective microbes that spread to domestic animals. Farmers of livestock animals use many methods to control ticks, and related treatments are used to reduce infestation of companion animals.

<i>Calliphora stygia</i> Species of fly

Calliphora stygia, commonly known as the brown blowfly, or rango tumaro in Māori, is a species of blow-fly that is found in Australia and New Zealand. The brown blowfly has a grey thorax and yellow-brown abdomen.

<span class="mw-page-title-main">Mites of domestic animals</span> Type of parasite of domestic animals

Mites that infest and parasitize domestic animals cause disease and loss of production. Mites are small invertebrates, most of which are free living but some are parasitic. Mites are similar to ticks and both comprise the order Acari in the phylum Arthropoda. Mites are highly varied and their classification is complex; a simple grouping is used in this introductory article. Vernacular terms to describe diseases caused by mites include scab, mange, and scabies. Mites and ticks have substantially different biology from, and are classed separately from, insects. Mites of domestic animals cause important types of skin disease, and some mites infest other organs. Diagnosis of mite infestations can be difficult because of the small size of most mites, but understanding how mites are adapted to feed within the structure of the skin is useful.

<span class="mw-page-title-main">Mites of livestock</span> Small crawling animals related to ticks and spiders

Mites are small crawling animals related to ticks and spiders. Most mites are free-living and harmless. Other mites are parasitic, and those that infest livestock animals cause many diseases that are widespread, reduce production and profit for farmers, and are expensive to control.

<span class="mw-page-title-main">Afoxolaner</span> Chemical compound used as an insecticide

Afoxolaner (INN) is an insecticide and acaricide that belongs to the isoxazoline chemical compound group.

<span class="mw-page-title-main">Parasitic flies of domestic animals</span> Overview of parasite-transmitting flies

Many species of flies of the two-winged type, Order Diptera, such as mosquitoes, horse-flies, blow-flies and warble-flies, cause direct parasitic disease to domestic animals, and transmit organisms that cause diseases. These infestations and infections cause distress to companion animals, and in livestock industry the financial costs of these diseases are high. These problems occur wherever domestic animals are reared. This article provides an overview of parasitic flies from a veterinary perspective, with emphasis on the disease-causing relationships between these flies and their host animals. The article is organized following the taxonomic hierarchy of these flies in the phylum Arthropoda, order Insecta. Families and genera of dipteran flies are emphasized rather than many individual species. Disease caused by the feeding activity of the flies is described here under parasitic disease. Disease caused by small pathogenic organisms that pass from the flies to domestic animals is described here under transmitted organisms; prominent examples are provided from the many species.

References

  1. Merck Index, 12th Edition, 2845.
  2. Bel, Yolanda; Wiesner, Petra; Kayser, Hartmut (October 2000). "Candidate target mechanisms of the growth inhibitor cyromazine: Studies of phenylalanine hydroxylase, puparial amino acids, and dihydrofolate reductase in dipteran insects". Archives of Insect Biochemistry and Physiology. 45 (2): 69–78. doi:10.1002/1520-6327(200010)45:2<69::AID-ARCH3>3.0.CO;2-3. ISSN   0739-4462.
  3. 1 2 Sandeman, R.M.; Levot, G.W.; Heath, A.C.G.; James, P.J.; Greeff, J.C.; Scott, M.J.; Batterham, P.; Bowles, V.M. (October 2014). "Control of the sheep blowfly in Australia and New Zealand – are we there yet?". International Journal for Parasitology. 44 (12): 879–891. doi:10.1016/j.ijpara.2014.08.009.
  4. Tellam, R.L.; Bowles, V.M. (March 1997). "Control of blowfly strike in sheep: Current strategies and future prospects". International Journal for Parasitology. 27 (3): 261–273. doi:10.1016/S0020-7519(96)00174-9.
  5. Levot, Gw (November 2012). "Cyromazine resistance detected in A ustralian sheep blowfly". Australian Veterinary Journal. 90 (11): 433–437. doi:10.1111/j.1751-0813.2012.00984.x. ISSN   0005-0423.
  6. "CYROMAZINE AND MELAMINE" (PDF). USDA FSIS. July 1991. Archived from the original (PDF) on 2007-06-16. Retrieved 2007-04-27.
  7. "Chemistry Laboratory Guidebook". USDA FSIS . Retrieved 2007-04-27.
  8. Environmental Protection Agency. Cyromazine; Pesticide Tolerance