Nereistoxin

Last updated
Nereistoxin
Nereistoxin.svg
Names
Preferred IUPAC name
N,N-Dimethyl-1,2-dithiolan-4-amine
Other names
NTX
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.121.136 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • Cartap:239-309-2
KEGG
PubChem CID
UNII
  • Nereistoxin:InChI=1S/C5H11NS2/c1-6(2)5-3-7-8-4-5/h5H,3-4H2,1-2H3
    Key: DSOOGBGKEWZRIH-UHFFFAOYSA-N
  • Cartap:InChI=1S/C7H15N3O2S2/c1-10(2)5(3-13-6(8)11)4-14-7(9)12/h5H,3-4H2,1-2H3,(H2,8,11)(H2,9,12)
    Key: IRUJZVNXZWPBMU-UHFFFAOYSA-N
  • Bensultap:Key: YFXPPSKYMBTNAV-UHFFFAOYSA-N
  • Nereistoxin:CN(C)C1CSSC1
  • Cartap:CN(C)C(CSC(=O)N)CSC(=O)N
Properties
C5H11NS2
Molar mass 149.27 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Nereistoxin is a natural product identified in 1962 as the toxic organic compound N,N-dimethyl-1,2-dithiolan-4-amine. It had first been isolated in 1934 from the marine annelid Lumbriconereis heteropoda and acts by blocking the nicotinic acetylcholine receptor. [1] Researchers at Takeda in Japan investigated it as a possible insecticide. They subsequently developed a number of derivatives that were commercialised, [2] [3] including those with the ISO common names [4] bensultap, [5] cartap, [6] thiocyclam [7] and thiosultap. [8] [9]

Contents

Structures and synthesis

Bensultap (R=SO2Ph) was made by the reaction of the sodium salt of benzenethiolsulfonate (PhSO2SNa) with N,N-dimethyl 1,3-dichloro-2-propylamine or N,N-dimethyl 2,3-dichloropropylamine in ethanol. [9]

Bensultap synthesis.png

Bensultap can be converted to nereistoxin by treatment with alkali. [9]

History

Japanese fishermen used the annelid worm Lumbriconereis heteropoda as bait but after accidental human poisonings the chemical agent responsible was identified and named nereistoxin. [10] In the 1960s, researchers at Takeda Chemical Industries synthesised the active material N,N-dimethyl-1,2-dithiolan-4-amine and derivatives in which the sulfur-sulfur bond of the 1,2-dithiolane ring was replaced by alternative sulfur-linked groups. The resulting compounds were in many cases less toxic to mammals than the natural product while retaining good activity on insects. It was subsequently shown that all the compounds which were commercialised acted by being propesticides — breaking down in the environment to nereistoxin or a toxic dithiol. [11] [12]

Mechanism of action

Nereistoxin has chemical similarity to acetylcholine and its mode of action was suggested originally as being possibly by interference with acetylcholinesterase. Later electrophysiological studies using synapses from the cockroach Periplaneta americana showed that it acts by blocking the nicotinic acetylcholine receptor / ion channel complex in the insect central nervous system. This is also the mode of action of the related insecticides, all of which can produce the dithiol corresponding to cleavage of the 1,2-thiolane ring in the parent compound. [12] [13] [14]

Usage

None of the insecticidal analogues of nereistoxin became major products in agriculture and their use was mainly limited to Japanese and Chinese cultivation of rice, where their control of pests such as the rice stem borer Chilo suppressalis was significant. [9] They were not licensed for use in Europe or the USA. The limited success of this group of chemicals was partly due to other compounds having similar modes of action but higher potency and mammalian safety becoming available. [15]

Related Research Articles

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Acaricides, which kill mites, ticks, and spiders are not strictly insecticides, but are usually classified together with insecticides. The major use of Insecticides is agriculture, but they are also used in home and garden, industrial buildings, vector control and control of insect parasites of animals and humans. Insecticides are distinct from repellents, which repel but do not kill.

<span class="mw-page-title-main">Chlorfenvinphos</span> Chemical compound

Chlorfenvinphos is an organophosphorus compound that was widely used as an insecticide and an acaricide. The molecule itself can be described as an enol ester derived from dichloroacetophenone and diethylphosphonic acid. Chlorfenvinphos has been included in many products since its first use in 1963. However, because of its toxic effect as a cholinesterase inhibitor it has been banned in several countries, including the United States and the European Union. Its use in the United States was discontinued in 1991.

<span class="mw-page-title-main">Heptachlor</span> Chemical compound

Heptachlor is an organochlorine compound that was used as an insecticide. Usually sold as a white or tan powder, heptachlor is one of the cyclodiene insecticides. In 1962, Rachel Carson's Silent Spring questioned the safety of heptachlor and other chlorinated insecticides. Due to its highly stable structure, heptachlor can persist in the environment for decades. In the United States, the Environmental Protection Agency has limited the sale of heptachlor products to the specific application of fire ant control in underground transformers. The amount that can be present in different foods is regulated.

Asparagusic acid is an organosulfur compound with the molecular formula C4H6O2S2 and systematically named 1,2-dithiolane-4-carboxylic acid. The molecule consists of a heterocyclic disulfide functional group (a 1,2-dithiolane) with a carboxylic acid side chain. It is found in asparagus and is believed to be the metabolic precursor to odorous sulfur compounds responsible for the distinctive smell of urine which has long been associated with eating asparagus.

<span class="mw-page-title-main">Phosmet</span> Organophosphate non-systemic insecticide

Phosmet is a phthalimide-derived, non-systemic, organophosphate insecticide used on plants and animals. It is mainly used on apple trees for control of codling moth, though it is also used on a wide range of fruit crops, ornamentals, and vines for the control of aphids, suckers, mites, and fruit flies.

Neonicotinoids are a class of neuro-active insecticides chemically similar to nicotine, developed by scientists at Shell and Bayer in the 1980s.

<span class="mw-page-title-main">Nitenpyram</span> Insecticide

Nitenpyram is a chemical frequently used as an insecticide in agriculture and veterinary medicine. The compound is an insect neurotoxin belonging to the class of neonicotinoids which works by blocking neural signaling of the central nervous system. It does so by binding irreversibly to the nicotinic acetylcholine receptor (nACHr) causing a stop of the flow of ions in the postsynaptic membrane of neurons leading to paralysis and death. Nitenpyram is highly selective towards the variation of the nACHr which insects possess, and has seen extensive use in targeted, insecticide applications.

<span class="mw-page-title-main">John E. Casida</span> American entomologist (1929–2018)

John Edward Casida was an American entomologist, toxicologist and professor at the University of California, Berkeley.

<span class="mw-page-title-main">Surugatoxin</span> Chemical compound

Surugatoxin (SGTX) is a type of venom found in the mid-gut digestive gland of the Japanese ivory mollusk Babyloniajaponica, a carnivorous gastropod. It functions as a ganglionic blocker of nicotinic acetylcholine receptors (nAChRs). The structurally and functionally related neosurugatoxin, also derived from Babylonia japonica, is an even more potent nAChR antagonist than SGTX.

<span class="mw-page-title-main">Chlorethoxyfos</span> Chemical compound

Chlorethoxyfos is an organophosphate acetylcholinesterase inhibitor used as an insecticide. It is registered for the control of corn rootworms, wireworms, cutworms, seed corn maggot, white grubs and symphylans on corn. The insecticide is sold under the trade name Fortress by E.I. du Pont de Nemours & Company.

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

<span class="mw-page-title-main">Thiosulfinate</span> Functional group

In organosulfur chemistry, thiosulfinate is a functional group consisting of the linkage R-S(O)-S-R. Thiolsulfinates are also named as alkanethiosulfinic acid esters.

<span class="mw-page-title-main">Thiamethoxam</span> Chemical compound

Thiamethoxam is the ISO common name for a mixture of cis-trans isomers used as a systemic insecticide of the neonicotinoid class. It has a broad spectrum of activity against many types of insects and can be used as a seed dressing.

<span class="mw-page-title-main">Thiacloprid</span> Chemical compound

Thiacloprid is an insecticide of the neonicotinoid class. Its mechanism of action is similar to other neonicotinoids and involves disruption of the insect's nervous system by stimulating nicotinic acetylcholine receptors. Thiacloprid was developed by Bayer CropScience for use on agricultural crops to control of a variety of sucking and chewing insects, primarily aphids and whiteflies.

<span class="mw-page-title-main">Terbufos</span> Chemical compound

Terbufos is a chemical compound used in insecticides and nematicides. It is part of the chemical family of organophosphates. It is a clear, colourless to pale yellow or reddish-brown liquid and sold commercially as granulate.

<span class="mw-page-title-main">Sulfoxaflor</span> Chemical compound

Sulfoxaflor, also marketed as Isoclast, is a systemic insecticide that acts as an insect neurotoxin. A pyridine and a trifluoromethyl compound, it is a member of a class of chemicals called sulfoximines, which act on the central nervous system of insects.

<span class="mw-page-title-main">Dioscorine</span> Chemical compound

Dioscorine is an alkaloid toxin isolated from the tubers of tropical yam on several continents. It has been used as a monkey poison in some African countries, and as an arrow poison to aid in hunting in several parts of Asia. It was first isolated from Dioscorea hirsute by Boorsma in 1894 and obtained in a crystalline form by Schutte in 1897, and has since been found in other Dioscorea species. Dioscorine is a neurotoxin that acts by blocking the nicotinic acetylcholine receptor. Dioscorine is generally isolated in tandem with other alkaloids such as dioscin but is usually the most potent toxin in the mixture. It is a convulsant, producing symptoms similar to picrotoxin, with which it shares a similar mechanism of action.

<span class="mw-page-title-main">1,2-Dithiolane</span> Chemical compound

1,2-Dithiolane is an organosulfur compound with the formula S2(CH2)3. It is also classified as a heterocycle derived from cyclopentane by replacing two methylene bridges with a disulfide group. 1,3-Dithiolane is an isomer. The parent molecule is not important but substituted derivatives, especially lipoic acid and its derivatives, are important. Several occur in foods.

<span class="mw-page-title-main">Flupyradifurone</span> Chemical compound

Flupyradifurone is a systemic butenolide insecticide developed by Bayer CropScience under the name Sivanto. Flupyradifurone protects crops from sap-feeding pests such as aphids and is safer for non-target organisms compared to other insecticides. Sivanto was launched in 2014 since it obtained its first commercial registration in central America. Insecticide Resistance Action Committee (IRAC) classified Flupyradifurone as 4D subset (butenolide) and it is the first pesticide in the butenolide category. It was approved by European Union in 2015.

References

  1. Teuber, Lene (1990). "Naturally Occurring 1,2-Dithiolanes and 1,2,3-Trithianes. Chemical and Biological Properties". Sulfur Reports. 9 (4): 257–333. doi:10.1080/01961779008048732.
  2. Roberts, Terry R; Hutson, David H, eds. (2007). "Nereistoxin precursors". Metabolic Pathways of Agrochemicals. pp. 127–138. doi:10.1039/9781847551375-00127. ISBN   978-0-85404-499-3.
  3. Lewis, Kathleen A.; Tzilivakis, John; Warner, Douglas J.; Green, Andrew (2016). "An international database for pesticide risk assessments and management". Human and Ecological Risk Assessment. 22 (4): 1050–1064. Bibcode:2016HERA...22.1050L. doi:10.1080/10807039.2015.1133242. hdl: 2299/17565 . S2CID   87599872.
  4. "Compendium of Pesticide Common Names". BCPC.
  5. Pesticide Properties Database. "Bensultap". University of Hertfordshire.
  6. Pesticide Properties Database. "Cartap". University of Hertfordshire.
  7. Pesticide Properties Database. "Thiocyclam". University of Hertfordshire.
  8. Pesticide Properties Database. "Thiosultap". University of Hertfordshire.
  9. 1 2 3 4 Konishi, Kazuo (1968). "New Insecticidally Active Derivatives of Nereistoxin". Agricultural and Biological Chemistry. 32 (5): 678–679. doi: 10.1271/bbb1961.32.678 .
  10. Chiba, Sukehiro, et al. (1967). "Nereistoxin and its derivatives, their neuromuscular blocking and convulsive actions" (pdf). The Japanese Journal of Pharmacology. 17 (3): 491–492. doi: 10.1254/jjp.17.491 . PMID   4384262.
  11. Lee, Seog-Jong; Caboni, Pierluigi; Tomizawa, Motohiro; Casida, John E. (2004). "Cartap Hydrolysis Relative to Its Action at the Insect Nicotinic Channel". Journal of Agricultural and Food Chemistry. 52 (1): 95–98. doi:10.1021/jf0306340. PMID   14709019.
  12. 1 2 Casida, John E.; Durkin, Kathleen A. (2013). "Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects". Annual Review of Entomology. 58: 99–117. doi:10.1146/annurev-ento-120811-153645. PMID   23317040.
  13. Sattelle, DB, et al. (1985). "Nereistoxin: Actions on a CNS Acetylcholine Receptor / Ion Channel in the Cockroach Periplaneta Americana" (PDF). Journal of Experimental Biology. 118: 37–52. doi:10.1242/jeb.118.1.37.
  14. Copping, Leonard G; Hewitt, H. Geoffrey, eds. (1998). "Insecticides". Chemistry and Mode of Action of Crop Protection Agents. pp. 46–73. doi:10.1039/9781847550422-00046. ISBN   978-0-85404-559-4.
  15. Jeschke, Peter; Nauen, Ralf; Beck, Michael Edmund (2013). "Nicotinic Acetylcholine Receptor Agonists: A Milestone for Modern Crop Protection". Angewandte Chemie International Edition. 52 (36): 9464–9485. doi:10.1002/anie.201302550. PMID   23934864.

Further reading