Tetramethylenedisulfotetramine

Last updated
Tetramethylenedisulfotetramine [1]
Tetramethylenedisulfotetramine.png
Tetramethylenedisulfotetramine molecule ball.png
Names
Preferred IUPAC name
6,6λ6-Dithia-1,3,5,7-tetraazaadamantane-2,2,6,6-tetrone
Other names
Tetramine, TETS, DSTA, Dushuqiang, Four-two-four, 424, NSC 172824, Meishuming, Sanbudao
Identifiers
3D model (JSmol)
AbbreviationsTETS, DSTA
ChemSpider
ECHA InfoCard 100.231.255 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C4H8N4O4S2/c9-13(10)5-1-6-3-8(13)4-7(2-5)14(6,11)12/h1-4H2 Yes check.svgY
    Key: AGGKEGLBGGJEBZ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H8N4O4S2/c9-13(10)5-1-6-3-8(13)4-7(2-5)14(6,11)12/h1-4H2
    Key: AGGKEGLBGGJEBZ-UHFFFAOYAA
  • O=S1(=O)N2CN3CN1CN(C2)S3(=O)=O
Properties
C4H8N4O4S2
Molar mass 240.26 g/mol
AppearanceWhite powder
Melting point 255 to 260 °C (491 to 500 °F; 528 to 533 K)
0.25 mg/mL
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
extremely toxic
GHS labelling:
GHS-pictogram-skull.svg
Lethal dose or concentration (LD, LC):
0.90 mg/kg (mice)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tetramethylenedisulfotetramine (TETS) is an organic compound used as a rodenticide (rat poison). [2] It is an odorless, tasteless white powder that is slightly soluble in water, DMSO and acetone, and insoluble in methanol and ethanol. It is a sulfamide derivative. It can be synthesized by reacting sulfamide with formaldehyde solution in acidified water. [3] When crystallized from acetone, it forms cubic crystals with a melting point of 255–260 °C.

Contents

Toxicity and mechanism

TETS is a neurotoxin and convulsant, [4] causing lethal convulsions. [5] Its effect is similar to but stronger than picrotoxin, a GABA-A receptor antagonist widely used in research. As one of the most hazardous pesticides, it is 100 times more toxic than potassium cyanide. TETS binds to neuronal GABA gated chloride channels, often causing status epilepticus. No antidote is known. The lethal dose for humans is 7–10 mg. Poisoning is diagnosed by GC-MS and the treatment is mainly supportive, with large IV doses of a benzodiazepine (e.g clonazepam) and pyridoxine to control symptoms. [6] TETS is sequestered in tissues of poisoned birds and can thus pose severe risk of secondary poisoning. [ citation needed ]

History

Previous research has documented the effectiveness of tetramethylenedisulfotetramine against mice. The dangers of this chemical were first suspected in 1949. [7] The U.S. Forest Service, looking to protect tree seeds for reforestation, noted its lethal effect against the rodent populations. Rather than repel wandering scavengers, the chemical was proved to be toxic to the local rodent population for up to 4 years. Continued experiments conducted by the U.S. Forest Service found no direct effect between TETS and the gastro-intestinal or renal systems of spinal dogs. In this same study, no effects were seen within the peripheral or skeletal nerve system, limiting symptoms of toxicity to the brain stem. Curtis and Johnson were the first to hypothesize TETS antagonistic behavior on GABA. An in-vitro study using superior cervical ganglion neurons of rats found TETS to antagonize the depolarization actions of GABA, while having no influence on the cholinomimetic agent carbachol. This evidence suggests that TETS may act as a non-competitive inhibitor for GABA. Further research findings using crustacean models, indicated a dose-dependent, non-competitive response to TETS that is reversible.

Research

In vitro and rapid screening tools

Recent studies have indicated the usefulness of pH sensitivity in identifying Chloride ion influx, resulting from GABAA receptor excitation. Other potential screening tools include spontaneous Calcium ion oscillations seen in hippocampal cell cultures from new born mice. This phenomenon can be measured by Calcium ion sensitive fluorescent dye. Further analyses showed that these Calcium ion oscillations are sensitive to MK-801 (an NMDA open channel blocker), suggesting that NMDA receptor operated channels are involved in TMDT induced spontaneous activity. When considering GABAA receptor activity, diazepam and pregnanolone reversed TMDT activity when applied to cell cultures individually and in combination. MK-801 and ketamine show more antagonistic effects on TMDT than diazepam within cerebral cortical cell cultures of embryonic rats.

In vivo mouse models

Low dosages of ketamine and MK-801, administered separately, were associated with increased clonic seizures with no effect on tonic clonic seizures on mice exposed to TETS. Further analysis on the same sample of mice, found that dual administration of diazepine and MK-801 had a synergistic protective effect against tonic-clonic seizures and 24-hour lethality, as opposed to clonic seizures that were poorly controlled. Sequential administration diazepine and MK-801 for clonic control of seizures in TETS exposed mice, may indicate the benefits of benzodiazepine-NMDA receptor antagonist regimens used to treat TETS exposed patients.

Worldwide restriction

Its use worldwide has been banned since 1984, but due to continuing demand and its ease of production, [8] [9] it is still readily, although illegally, available in China, until being formally banned in 2002 [10] . The best known Chinese rodenticide, containing about 6–20% TETS, is Dushuqiang, "very strong rat poison". It has been used for mass poisonings in China: in April 2004, there were 74 casualties after eating scallion-flavored pancakes tainted by their vendor's competitor; and in September 2002, 400 people were poisoned and 38 died from contaminated food. [11] [12] In 2002, there was one documented case of accidental poisoning in the US. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Ibotenic acid</span> Glutamate receptor agonist and neurotoxin

Ibotenic acid or (S)-2-amino-2-(3-hydroxyisoxazol-5-yl)acetic acid, also referred to as ibotenate, is a chemical compound and psychoactive drug which occurs naturally in Amanita muscaria and related species of mushrooms typically found in the temperate and boreal regions of the northern hemisphere. It is a prodrug of muscimol, broken down by the liver to that much more stable compound. It is a conformationally-restricted analogue of the neurotransmitter glutamate, and due to its structural similarity to this neurotransmitter, acts as a non-selective glutamate receptor agonist. Because of this, ibotenic acid can be a powerful neurotoxin in high doses, and is employed as a "brain-lesioning agent" through cranial injections in scientific research. The neurotoxic effects appear to be dose-related and risks are unclear through consumption of ibotenic-acid containing fungi, although thought to be negligible in small doses.

<span class="mw-page-title-main">Dizocilpine</span> Chemical compound

Dizocilpine (INN), also known as MK-801, is a pore blocker of the NMDA receptor, a glutamate receptor, discovered by a team at Merck in 1982. Glutamate is the brain's primary excitatory neurotransmitter. The channel is normally blocked with a magnesium ion and requires depolarization of the neuron to remove the magnesium and allow the glutamate to open the channel, causing an influx of calcium, which then leads to subsequent depolarization. Dizocilpine binds inside the ion channel of the receptor at several of PCP's binding sites thus preventing the flow of ions, including calcium (Ca2+), through the channel. Dizocilpine blocks NMDA receptors in a use- and voltage-dependent manner, since the channel must open for the drug to bind inside it. The drug acts as a potent anti-convulsant and probably has dissociative anesthetic properties, but it is not used clinically for this purpose because of the discovery of brain lesions, called Olney's lesions (see below), in laboratory rats. Dizocilpine is also associated with a number of negative side effects, including cognitive disruption and psychotic-spectrum reactions. It inhibits the induction of long term potentiation and has been found to impair the acquisition of difficult, but not easy, learning tasks in rats and primates. Because of these effects of dizocilpine, the NMDA receptor pore blocker ketamine is used instead as a dissociative anesthetic in human medical procedures. While ketamine may also trigger temporary psychosis in certain individuals, its short half-life and lower potency make it a much safer clinical option. However, dizocilpine is the most frequently used uncompetitive NMDA receptor antagonist in animal models to mimic psychosis for experimental purposes.

<span class="mw-page-title-main">Picrotoxin</span> Chemical compound

Picrotoxin, also known as cocculin, is a poisonous crystalline plant compound. It was first isolated by the French pharmacist and chemist Pierre François Guillaume Boullay (1777–1869) in 1812. The name "picrotoxin" is a combination of the Greek words "picros" (bitter) and "toxicon" (poison). A mixture of two different compounds, picrotoxin occurs naturally in the fruit of the Anamirta cocculus plant, although it can also be synthesized chemically.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system (CNS). Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions and, to a lesser extent, bicarbonate ions.

Molecular neuroscience is a branch of neuroscience that observes concepts in molecular biology applied to the nervous systems of animals. The scope of this subject covers topics such as molecular neuroanatomy, mechanisms of molecular signaling in the nervous system, the effects of genetics and epigenetics on neuronal development, and the molecular basis for neuroplasticity and neurodegenerative diseases. As with molecular biology, molecular neuroscience is a relatively new field that is considerably dynamic.

<span class="mw-page-title-main">Kainate receptor</span> Class of ionotropic glutamate receptors

Kainate receptors, or kainic acid receptors (KARs), are ionotropic receptors that respond to the neurotransmitter glutamate. They were first identified as a distinct receptor type through their selective activation by the agonist kainate, a drug first isolated from the algae Digenea simplex. They have been traditionally classified as a non-NMDA-type receptor, along with the AMPA receptor. KARs are less understood than AMPA and NMDA receptors, the other ionotropic glutamate receptors. Postsynaptic kainate receptors are involved in excitatory neurotransmission. Presynaptic kainate receptors have been implicated in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism.

<span class="mw-page-title-main">Cicutoxin</span> Chemical compound

Cicutoxin is a naturally-occurring poisonous chemical compound produced by several plants from the family Apiaceae including water hemlock (Cicuta species) and water dropwort (Oenanthe crocata). The compound contains polyene, polyyne, and alcohol functional groups and is a structural isomer of oenanthotoxin, also found in water dropwort. Both of these belong to the C17-polyacetylenes chemical class.

<span class="mw-page-title-main">Adinazolam</span> Triazolobenzodiazepine drug

Adinazolam is a tranquilizer of the triazolobenzodiazepine (TBZD) class, which are benzodiazepines (BZDs) fused with a triazole ring. It possesses anxiolytic, anticonvulsant, sedative, and antidepressant properties. Adinazolam was developed by Jackson B. Hester, who was seeking to enhance the antidepressant properties of alprazolam, which he also developed. Adinazolam was never FDA approved and never made available to the public market; however, it has been sold as a designer drug.

<span class="mw-page-title-main">Oenanthotoxin</span> Chemical compound

Oenanthotoxin is a toxin extracted from hemlock water-dropwort and other plants of the genus Oenanthe. It is a central nervous system poison, and acts as a noncompetitive antagonist of the neurotransmitter gamma-aminobutyric acid. A case has been made for the presence of this toxin in local Oenanthe species playing a causative role in euthanasia in ancient Sardinia. It was crystallized in 1949 by Clarke and co-workers. It is structurally closely related to the toxins cicutoxin and carotatoxin. Oenanthotoxin is a C17 polyacetylene isomer of cicutoxin.

<span class="mw-page-title-main">Loreclezole</span> Chemical compound

Loreclezole is a sedative and an anticonvulsant which acts as a GABAA receptor positive allosteric modulator. The binding site of loreclezole has been shown experimentally to be shared by valerenic acid, an extract of the root of the valerian plant. Structurally, loreclezole is a triazole derivative. In animal seizure models, loreclezole is protective against pentylenetetrazol seizures but is less active in the maximal electroshock test. In addition, at low, nontoxic doses, the drug has anti-absence activity in a genetic model of generalized absence epilepsy. Consequently, loreclezole has a profile of activity similar to that of benzodiazepines. A potential benzodiazepine-like interaction with GABA receptors is suggested by the observation that the anticonvulsant effects of loreclezole can be reversed by benzodiazepine receptor inverse agonists. The benzodiazepine antagonist flumazenil, however, fails to alter the anticonvulsant activity of loreclezole, indicating that loreclezole is not a benzodiazepine receptor agonist. Using native rat and cloned human GABA-A receptors, loreclezole strongly potentiated GABA-activated chloride current. However, the activity of the drug did not require the presence of the γ-subunit and was not blocked by flumazenil, confirming that loreclezole does not interact with the benzodiazepine recognition site.

<span class="mw-page-title-main">Remacemide</span> Chemical compound

Remacemide is a drug which acts as a low-affinity NMDA antagonist with sodium channel blocking properties. It has been studied for the treatment of acute ischemic stroke, epilepsy, Huntington's disease, and Parkinson's disease.

A convulsant is a drug which induces convulsions and/or epileptic seizures, the opposite of an anticonvulsant. These drugs generally act as stimulants at low doses, but are not used for this purpose due to the risk of convulsions and consequent excitotoxicity. Most convulsants are antagonists at either the GABAA or glycine receptors, or ionotropic glutamate receptor agonists. Many other drugs may cause convulsions as a side effect at high doses but only drugs whose primary action is to cause convulsions are known as convulsants. Nerve agents such as sarin, which were developed as chemical weapons, produce convulsions as a major part of their toxidrome, but also produce a number of other effects in the body and are usually classified separately. Dieldrin which was developed as an insecticide blocks chloride influx into the neurons causing hyperexcitability of the CNS and convulsions. The Irwin observation test and other studies that record clinical signs are used to test the potential for a drug to induce convulsions. Camphor, and other terpenes given to children with colds can act as convulsants in children who have had febrile seizures.

<span class="mw-page-title-main">Tutin (toxin)</span> Chemical compound

Tutin is a poisonous plant derivative found in New Zealand tutu plants. It acts as a potent antagonist of the glycine receptor, and has powerful convulsant effects. It is used in scientific research into the glycine receptor. It is sometimes associated with outbreaks of toxic honey poisoning when bees feed on honeydew exudate from the sap-sucking passion vine hopper insect, when the vine hoppers have been feeding on the sap of tutu bushes. Toxic honey is a rare event and is more likely to occur when comb honey is eaten directly from a hive that has been harvesting honeydew from passionvine hoppers feeding on tutu plants.

<span class="mw-page-title-main">Pentylenetetrazol</span> Chemical compound

Pentylenetetrazol (PTZ), also known as pentylenetetrazole, leptazol, metrazol, pentetrazol (INN), pentamethylenetetrazol, Corazol, Cardiazol, or Deumacard, is a drug formerly used as a circulatory and respiratory stimulant. High doses cause convulsions, as discovered by Hungarian-American neurologist and psychiatrist Ladislas J. Meduna in 1934. It has been used in convulsive therapy, and was found to be effective—primarily for depression—but side effects such as uncontrolled seizures were difficult to avoid. In 1939, pentylenetetrazol was replaced by electroconvulsive therapy, which is easier to administer, as the preferred method for inducing seizures in England's mental hospitals. In the US, its approval by the Food and Drug Administration was revoked in 1982. It is used in Italy as a cardio-respiratory stimulant in combination with codeine in a cough suppressant drug.

<span class="mw-page-title-main">Rostral ventromedial medulla</span> Group of neurons in medulla of brain

The rostral ventromedial medulla (RVM), or ventromedial nucleus of the spinal cord, is a group of neurons located close to the midline on the floor of the medulla oblongata. The rostral ventromedial medulla sends descending inhibitory and excitatory fibers to the dorsal horn spinal cord neurons. There are 3 categories of neurons in the RVM: on-cells, off-cells, and neutral cells. They are characterized by their response to nociceptive input. Off-cells show a transitory decrease in firing rate right before a nociceptive reflex, and are theorized to be inhibitory. Activation of off-cells, either by morphine or by any other means, results in antinociception. On-cells show a burst of activity immediately preceding nociceptive input, and are theorized to be contributing to the excitatory drive. Neutral cells show no response to nociceptive input.

<span class="mw-page-title-main">Quisqualamine</span> Chemical compound

Quisqualamine is the α-decarboxylated analogue of quisqualic acid, as well as a relative of the neurotransmitters glutamate and γ-aminobutyric acid (GABA). α-Decarboxylation of excitatory amino acids can produce derivatives with inhibitory effects. Indeed, unlike quisqualic acid, quisqualamine has central depressant and neuroprotective properties and appears to act predominantly as an agonist of the GABAA receptor and also to a lesser extent as an agonist of the glycine receptor, due to the facts that its actions are inhibited in vitro by GABAA antagonists like bicuculline and picrotoxin and by the glycine antagonist strychnine, respectively. Mg2+ and DL-AP5, NMDA receptor blockers, CNQX, an antagonist of both the AMPA and kainate receptors, and 2-hydroxysaclofen, a GABAB receptor antagonist, do not affect quisqualamine's actions in vitro, suggesting that it does not directly affect the ionotropic glutamate receptors or the GABAB receptor in any way. Whether it binds to and acts upon any of the metabotropic glutamate receptors like its analogue quisqualic acid however is unclear.

<span class="mw-page-title-main">Dioscorine</span> Chemical compound

Dioscorine is an alkaloid toxin isolated from the tubers of tropical yam on several continents. It has been used as a monkey poison in some African countries, and as an arrow poison to aid in hunting in several parts of Asia. It was first isolated from Dioscorea hirsute by Boorsma in 1894 and obtained in a crystalline form by Schutte in 1897, and has since been found in other Dioscorea species. Dioscorine is a neurotoxin that acts by blocking the nicotinic acetylcholine receptor. Dioscorine is generally isolated in tandem with other alkaloids such as dioscin but is usually the most potent toxin in the mixture. It is a convulsant, producing symptoms similar to picrotoxin, with which it shares a similar mechanism of action.

<span class="mw-page-title-main">IPTBO</span> Chemical compound

IPTBO is a bicyclic phosphate convulsant. It is an extremely potent GABA receptor antagonist that can cause violent convulsions in mice.

A GABAA receptor negative allosteric modulator is a negative allosteric modulator (NAM), or inhibitor, of the GABAA receptor, a ligand-gated ion channel of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). They are closely related and similar to GABAA receptor antagonists. The effects of GABAA receptor NAMs are functionally the opposite of those of GABAA receptor positive allosteric modulators (PAMs) like the benzodiazepines, barbiturates, and ethanol (alcohol). Non-selective GABAA receptor NAMs can produce a variety of effects including convulsions, neurotoxicity, and anxiety, among others.

<span class="mw-page-title-main">TBPO</span> Chemical compound

TBPO is an extremely toxic bicyclic phosphate convulsant and GABA receptor antagonist. It is the most toxic bicyclic phosphate known, with an LD50 of 36 μg/kg in mice.

References

  1. Merck Index , 11th Edition, 9158.
  2. "Basic datasheet for tetramethylene disulfotetramine". Inchem.
  3. Zhao, C; Hwang, S. H; Buchholz, B. A; Carpenter, T. S; Lightstone, F. C; Yang, J; Hammock, B. D; Casida, J. E (2014). "GABAA receptor target of tetramethylenedisulfotetramine". Proceedings of the National Academy of Sciences of the United States of America. 111 (23): 8607–12. Bibcode:2014PNAS..111.8607Z. doi: 10.1073/pnas.1407379111 . PMC   4060666 . PMID   24912155.
  4. Banks CN; Yang D; Lein PJ; Rogawski MA (2014). "Tetramethylenedisulfotetramine". In P. Wexler (ed.). Encyclopedia of Toxicology, 3rd edition. Elsevier Inc., Academic Press. pp. 509–511.
  5. Zolkowska, D.; Banks, C. N.; Dhir, A.; Inceoglu, B.; Sanborn, J. R.; McCoy, M. R.; Bruun, D. A.; Hammock, B. D.; Lein, P. J.; Rogawski, M. A. (2012). "Characterization of Seizures Induced by Acute and Repeated Exposure to Tetramethylenedisulfotetramine". Journal of Pharmacology and Experimental Therapeutics. 341 (2): 435–446. doi:10.1124/jpet.111.190579. PMC   3336809 . PMID   22328574.
  6. 1 2 CDC (2003). "Poisoning by an Illegally Imported Chinese Rodenticide Containing Tetramethylenedisulfotetramine - New York City, 2002". JAMA. 289 (20): 2640–2642. doi: 10.1001/jama.289.20.2640 . PMID   12771101.
  7. Hecht, G.; Henecka, H. (1949). "Über ein hochtoxisches Kondensationsprodukt von Sulfamid und Formaldehyd" [About a Highly Toxic Condensation Product of Sulfamide and Formaldehyde]. Angewandte Chemie (in German). 61 (9): 365–366. Bibcode:1949AngCh..61..365H. doi:10.1002/ange.19490610905..
  8. Hecht, G.; Henecka, H. (1949). "Über ein hochtoxisches Kondensationsprodukt von Sulfamid und Formaldehyd" [About a Highly Toxic Condensation Product of Sulfamide and Formaldehyde]. Angewandte Chemie (in German). 61 (9): 365–366. Bibcode:1949AngCh..61..365H. doi:10.1002/ange.19490610905.
  9. USpatent 2650186,Hecht, G.; Henecka, H.; Meisenheimer, M.,"Rodenticidal compositions",issued 1953-08-25, assigned to Bayer Leverkusen, Germany
  10. https://www.163.com/dy/article/JJ51VPLJ0530JPVV.html
  11. Whitlow, K. S.; Belson, M.; Barrueto, F.; Nelson, L.; Henderson, A. K. (2005). "Tetramethylenedisulfotetramine: Old Agent and New Terror" (PDF). Annals of Emergency Medicine. 45 (6): 609–613. doi:10.1016/j.annemergmed.2004.09.009. PMID   15940093. Archived from the original (PDF) on 2012-04-02.
  12. Croddy, E. (2004). "Rat Poison and Food Security in the People's Republic of China: Focus on Tetramethylene Disulfotetramine (Tetramine)". Archives of Toxicology. 78 (1): 1–6. doi:10.1007/s00204-003-0509-0. PMC   7080144 . PMID   14551672.