Trifluoronitrosomethane

Last updated
Trifluoronitrosomethane
Skeletal formula of trifluoronitrosomethane TFNM.svg
Skeletal formula of trifluoronitrosomethane
Space-filling model of trifluoronitrosomethane Trifluoronitrosomethane-3D-spacefill.png
Space-filling model of trifluoronitrosomethane
Trifluoronitrosomethane.png
Names
Preferred IUPAC name
Trifluoro(nitroso)methane
Other names
Trifluoro-nitrosomethane
Trifluoro-nitroso-methane
Nitrosotrifluoromethane
Identifiers
AbbreviationsTFNM
ChemSpider
ECHA InfoCard 100.005.804 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 206-383-2
PubChem CID
UNII
  • InChI=1S/CF3NO/c2-1(3,4)5-6
    Key: PGOMVYSURVZIIW-UHFFFAOYSA-N
Properties
CF3NO
Molar mass 99.012 g·mol−1
AppearanceDeep blue gas [1]
Purple solid
Melting point −196.6 °C (−321.9 °F; 76.5 K)
Boiling point −85 °C (−121 °F; 188 K)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
NFPA 704 (fire diamond)
3
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Trifluoronitrosomethane (commonly abbreviated TFNM) is a toxic organic compound consisting of a trifluoromethyl group covalently bound to a nitroso group. Its distinctive deep blue color is unusual for a gas.

Contents

History

Trifluoronitrosomethane was synthesized for the first time in 1936 by Otto Ruff and Manfred Giese at the University of Wrocław. [2] It was created through the fluorination of silver cyanide in the presence of silver nitrate and silver oxide.

Production

Trifluoronitrosomethane can be produced from the reaction of trifluoroiodomethane and nitric oxide under a UV light with a yield of up to 90% in normal pressure. A small amount of mercury is needed as catalyst. The reaction results in the creation of iodine as a by-product. [3] [4] [5]

Properties

Although it is somewhat more kinetically stable due to its fluorine substituents, trifluoronitrosomethane, like other nitroso compounds, has a weak C–N bond of only 39.9 kcal/mol. [6]

Trifluoronitrosoethylene is also a similar deep blue gas. [7]

See also

Related Research Articles

Tetrafluoroethylene (TFE) is a fluorocarbon with the chemical formula C2F4. It is the simplest perfluorinated alkene. This gaseous species is used primarily in the industrial preparation of fluoropolymers.

<span class="mw-page-title-main">Nitroso</span> Class of functional groups with a –N=O group attached

In organic chemistry, nitroso refers to a functional group in which the nitric oxide group is attached to an organic moiety. As such, various nitroso groups can be categorized as C-nitroso compounds, S-nitroso compounds, N-nitroso compounds, and O-nitroso compounds.

<span class="mw-page-title-main">Triflic acid</span> Chemical compound

Triflic acid, the short name for trifluoromethanesulfonic acid, TFMS, TFSA, HOTf or TfOH, is a sulfonic acid with the chemical formula CF3SO3H. It is one of the strongest known acids. Triflic acid is mainly used in research as a catalyst for esterification. It is a hygroscopic, colorless, slightly viscous liquid and is soluble in polar solvents.

<span class="mw-page-title-main">Nitrosobenzene</span> Chemical compound

Nitrosobenzene is the organic compound with the formula C6H5NO. It is one of the prototypical organic nitroso compounds. Characteristic of its functional group, it is a dark green species that exists in equilibrium with its pale yellow dimer. Both monomer and dimer are diamagnetic.

<span class="mw-page-title-main">Iodotrifluoroethylene</span> Chemical compound

Iodotrifluoroethylene is the organofluorine compound with the formula C
2
F
3
I
. It is a volatile colorless liquid.

Organofluorine chemistry describes the chemistry of the organofluorines, organic compounds that contain the carbon–fluorine bond. Organofluorine compounds find diverse applications ranging from oil and water repellents to pharmaceuticals, refrigerants, and reagents in catalysis. In addition to these applications, some organofluorine compounds are pollutants because of their contributions to ozone depletion, global warming, bioaccumulation, and toxicity. The area of organofluorine chemistry often requires special techniques associated with the handling of fluorinating agents.

<span class="mw-page-title-main">Metal nitrosyl complex</span> Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

<span class="mw-page-title-main">Nitrosyl chloride</span> Chemical compound

Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent, after William A. Tilden, who was the first to produce it as a pure compound.

The Barton reaction, also known as the Barton nitrite ester reaction, is a photochemical reaction that involves the photolysis of an alkyl nitrite to form a δ-nitroso alcohol.

The Stieglitz rearrangement is a rearrangement reaction in organic chemistry which is named after the American chemist Julius Stieglitz (1867–1937) and was first investigated by him and Paul Nicholas Leech in 1913. It describes the 1,2-rearrangement of trityl amine derivatives to triaryl imines. It is comparable to a Beckmann rearrangement which also involves a substitution at a nitrogen atom through a carbon to nitrogen shift. As an example, triaryl hydroxylamines can undergo a Stieglitz rearrangement by dehydration and the shift of a phenyl group after activation with phosphorus pentachloride to yield the respective triaryl imine, a Schiff base.

<span class="mw-page-title-main">Silver trifluoromethanesulfonate</span> Chemical compound

Silver trifluoromethanesulfonate, or silver triflate is the triflate (CF3SO3) salt of Ag+. It is a white or colorless solid that is soluble in water and some organic solvents including, benzene. It is a reagent used in the synthesis of organic and inorganic triflates.

<span class="mw-page-title-main">Vanadium pentafluoride</span> Chemical compound

Vanadium(V) fluoride is the inorganic compound with the chemical formula VF5. It is a colorless volatile liquid. It is a highly reactive compound, as indicated by its ability to fluorinate organic substances.

Trifluoromethylation in organic chemistry describes any organic reaction that introduces a trifluoromethyl group in an organic compound. Trifluoromethylated compounds are of some importance in pharmaceutical industry and agrochemicals. Several notable pharmaceutical compounds have a trifluoromethyl group incorporated: fluoxetine, mefloquine, Leflunomide, nulitamide, dutasteride, bicalutamide, aprepitant, celecoxib, fipronil, fluazinam, penthiopyrad, picoxystrobin, fluridone, norflurazon, sorafenib and triflurazin. A relevant agrochemical is trifluralin. The development of synthetic methods for adding trifluoromethyl groups to chemical compounds is actively pursued in academic research.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Radical fluorination is a type of fluorination reaction, complementary to nucleophilic and electrophilic approaches. It involves the reaction of an independently generated carbon-centered radical with an atomic fluorine source and yields an organofluorine compound.

<span class="mw-page-title-main">Trifluoramine oxide</span> Chemical compound

Trifluoramine oxide or Nitrogen trifluoride oxide (F3NO) is an inorganic molecule with strong fluorinating powers.

David Markham Lemal is the Albert W. Smith Professor of Chemistry Emeritus and Research Professor of Chemistry at Dartmouth College. He received an A.B. degree (summa) from Amherst College in 1955 and a Ph.D. in Chemistry from Harvard University in 1959. At Harvard he worked with R. B. Woodward on deoxy sugars and a synthesis of the alkaloid yohimbine.

<span class="mw-page-title-main">Nitrosyl cyanide</span> Chemical compound

Nitrosyl cyanide, a blue-green gas, is the compound with the molecular formula ONCN. The compound has been invoked as a product of the oxidation of cyanamide catalyzed by the enzyme glucose oxidase.

<span class="mw-page-title-main">Hexafluoroarsenate</span> Chemical compound

The hexafluoroarsenate anion is a chemical species with formula AsF−6. Hexafluoroarsenate is relatively inert, being the conjugate base of the notional superacid hexafluoroarsenic acid.

References

  1. Griffin, C. E.; Haszeldine, R. N. (1960). "279. Perfluoroalkyl derivatives of nitrogen. Part VIII. Trifluoronitrosoethylene and its polymers". Journal of the Chemical Society (Resumed): 1398. doi:10.1039/JR9600001398.
  2. Ruff, Otto; Giese, Manfred (1936). "Das Trifluor-nitroso-methan, CF3.NO (III.)". Ber Dtsch Chem Ges. 69 (4): 684–689. doi:10.1002/cber.19360690411.
  3. Senning, Alexander (1964). "N-, 0-, and S-trihalomethyl compounds". Chemical Reviews . 65 (4): 385–412. doi:10.1021/cr60236a001.
  4. Taylor, C. W.; Brice, T. J.; Wear, R. L. (1962). "The Preparation of Polyfluoronitrosoalkanes from Nitrosyl Polyfluoroacylates". Journal of Organic Chemistry. 27 (3): 1064–1066. doi:10.1021/jo01050a523.
  5. Park, J. D.; Rosser, R. W.; Lacher, J. R. (1962). "Preparation of Perfluoronitrosoalkanes. Reaction of Trifluoroacetic Anhydride with Nitrosyl Chloride". Journal of Organic Chemistry. 27 (4): 1642. doi:10.1021/jo01051a519.
  6. Luo, Yu-Ran (2007). Comprehensive Handbook of Chemical Bond Energies. Boca Raton, Fl.: CRC Press. p. 406. ISBN   978-0-8493-7366-4.
  7. Griffin, C. E.; Haszeldine, R. N. (1960). "279. Perfluoroalkyl derivatives of nitrogen. Part VIII. Trifluoronitrosoethylene and its polymers". Journal of the Chemical Society (Resumed): 1398–1406. doi:10.1039/JR9600001398.