Silver oxide

Last updated
Silver oxide
Silver(I)-oxide-unit-cell-3D-bs-17.png
Silver(I)-oxide-xtal-3x3x3-3D-bs-17.png
Silver oxide.jpg
Names
IUPAC name
Silver(I) oxide
Other names
Silver rust, Argentous oxide, Silver monoxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.039.946 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 243-957-1
MeSH silver+oxide
PubChem CID
RTECS number
  • VW4900000
UNII
  • InChI=1S/2Ag.O/q2*+1;-2 X mark.svgN
    Key: NDVLTYZPCACLMA-UHFFFAOYSA-N X mark.svgN
  • InChI=1S/2Ag.O/q2*+1;-2
    Key: NDVLTYZPCACLMA-UHFFFAOYSA-N
  • [O-2].[Ag+].[Ag+]
Properties
Ag2O
Molar mass 231.735 g·mol−1
AppearanceBlack/ brown cubic crystals
Odor Odorless [1]
Density 7.14 g/cm3
Melting point 300 °C (572 °F; 573 K) decomposes from ≥200 °C [2] [3]
0.013 g/L (20 °C)
0.025 g/L (25 °C) [4]
0.053 g/L (80 °C) [2]
Solubility product (Ksp) of AgOH
1.52·10−8 (20 °C)
Solubility Soluble in acid, alkali
Insoluble in ethanol [4]
Acidity (pKa)12.1 (estimated) [5]
134.0·10−6 cm3/mol
Structure
Cubic
Pn3m, 224
Thermochemistry
65.9 J/mol·K [4]
Std molar
entropy
(S298)
122 J/mol·K [6]
−31 kJ/mol [6]
−11.3 kJ/mol [3]
Hazards
GHS labelling:
GHS-pictogram-rondflam.svg GHS-pictogram-exclam.svg [7]
Danger
H272, H315, H319, H335 [7]
P220, P261, P305+P351+P338 [7]
NFPA 704 (fire diamond)
[1]
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
2
0
1
Lethal dose or concentration (LD, LC):
2.82 g/kg (rats, oral) [1]
Related compounds
Related compounds
Silver(I,III) oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Silver oxide is the chemical compound with the formula Ag2O. It is a fine black or dark brown powder that is used to prepare other silver compounds.

Contents

Preparation

Silver(I) oxide produced by reacting lithium hydroxide with a very dilute silver nitrate solution Silver(I) oxide.JPG
Silver(I) oxide produced by reacting lithium hydroxide with a very dilute silver nitrate solution

Silver oxide can be prepared by combining aqueous solutions of silver nitrate and an alkali hydroxide. [8] [9] This reaction does not afford appreciable amounts of silver hydroxide due to the favorable energetics for the following reaction: [10]

(pK = 2.875 [11] )

With suitably controlled conditions, this reaction can be used to prepare Ag2O powder with properties suitable for several uses including as a fine grained conductive paste filler. [12]

Structure and properties

Ag2O features linear, two-coordinate Ag centers linked by tetrahedral oxides. It is isostructural with Cu2O. It "dissolves" in solvents that degrade it. It is slightly soluble in water due to the formation of the ion Ag(OH)2 and possibly related hydrolysis products. [13] It is soluble in ammonia solution, producing active compound of Tollens' reagent. A slurry of Ag2O is readily attacked by acids:

where HX = HF, HCl, HBr, HI, or CF3COOH. It will also react with solutions of alkali chlorides to precipitate silver chloride, leaving a solution of the corresponding alkali hydroxide. [13] [14]

Despite the photosensitivity of many silver compounds, silver oxide is not photosensitive, [15] although it readily decomposes at temperatures above 280 °C. [16]

Applications

This oxide is used in silver-oxide batteries. [17] In organic chemistry, silver oxide is used as a mild oxidizing agent. [18] For example, it oxidizes aldehydes to carboxylic acids. [19]

Related Research Articles

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction between an acid and a base

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH3CH2C≡N is called "propionitrile". The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

<span class="mw-page-title-main">Tollens' reagent</span> Chemical reagent used to distinguish between aldehydes and ketones

Tollens' reagent is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes. The reagent consists of a solution of silver nitrate, ammonium hydroxide and some sodium hydroxide. It was named after its discoverer, the German chemist Bernhard Tollens. A positive test with Tollens' reagent is indicated by the precipitation of elemental silver, often producing a characteristic "silver mirror" on the inner surface of the reaction vessel.

<span class="mw-page-title-main">Tetrabutylammonium hydroxide</span> Chemical compound

Tetrabutylammonium hydroxide is the chemical compound with the formula (C4H9)4NOH, abbreviated Bu4NOH with the acronym TBAOH or TBAH. This species is employed as a solution in water or alcohols. It is a common base in organic chemistry. Relative to more conventional inorganic bases, such as KOH and NaOH, Bu4NOH is more soluble in organic solvents.

<span class="mw-page-title-main">Silver carbonate</span> Chemical compound

Silver carbonate is the chemical compound with the formula Ag2CO3. This salt is yellow but typical samples are grayish due to the presence of elemental silver. It is poorly soluble in water, like most transition metal carbonates.

Zinc hydroxide Zn(OH)2 is an inorganic chemical compound. It also occurs naturally as 3 rare minerals: wülfingite (orthorhombic), ashoverite and sweetite (both tetragonal).

<span class="mw-page-title-main">Iron(III) nitrate</span> Chemical compound

Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.

<span class="mw-page-title-main">Nickel oxide hydroxide</span> Chemical compound

Nickel oxide hydroxide is the inorganic compound with the chemical formula NiO(OH). It is a black solid that is insoluble in all solvents but attacked by base and acid. It is a component of the nickel–metal hydride battery and of the nickel–iron battery.

<span class="mw-page-title-main">Sodium bismuthate</span> Chemical compound

Sodium bismuthate is an inorganic compound, and a strong oxidiser with chemical formula NaBiO3. It is somewhat hygroscopic, but not soluble in cold water, which can be convenient since the reagent can be easily removed after the reaction. It is one of the few water insoluble sodium salts. Commercial samples may be a mixture of bismuth(V) oxide, sodium carbonate and sodium peroxide.

<span class="mw-page-title-main">Metal halides</span>

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

<span class="mw-page-title-main">Lead compounds</span> Type of compound

Compounds of lead exist with lead in two main oxidation states: +2 and +4. The former is more common. Inorganic lead(IV) compounds are typically strong oxidants or exist only in highly acidic solutions.

Chromium(III) hydroxide is a gelatinous green inorganic compound with the chemical formula Cr(OH)3. It is a polymer with an undefined structure and low solubility. It is amphoteric, dissolving in both strong alkalis and strong acids.

Germanium(II) hydroxide, normally written as Ge(OH)2, is a poorly characterised compound, sometimes called hydrous germanium(II) oxide or germanous hydroxide. It was first reported by Winkler in 1886.

Silver hyponitrite is an ionic compound with formula Ag2N2O2 or (Ag+
)2[ON=NO]2−, containing monovalent silver cations and hyponitrite anions. It is a bright yellow solid practically insoluble in water and most organic solvents, including DMF and DMSO.

<span class="mw-page-title-main">Bismuthyl (ion)</span> Chemical compound

Bismuthyl — inorganic oxygen-containing singly charged ion with the chemical formula BiO+, is an oxycation of bismuth in the +3 oxidation state. Most often it is formed during the hydrolysis of trivalent bismuth salts, primarily nitrate, chloride and other halides. In chemical compounds, bismuthyl plays the role of a monovalent cation.

References

  1. 1 2 3 "Silver Oxide MSDS". SaltLakeMetals.com. Salt Lake Metals. Retrieved 2014-06-08.
  2. 1 2 Perry, Dale L. (1995). Handbook of Inorganic Compounds (illustrated ed.). CRC Press. p. 354. ISBN   0849386713.
  3. 1 2 "Silver oxide".
  4. 1 2 3 Lide, David R. (1998). Handbook of Chemistry and Physics (81 ed.). Boca Raton, FL: CRC Press. pp. 4–83. ISBN   0-8493-0594-2.
  5. Perrin, D. D., ed. (1982) [1969]. Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution. IUPAC Chemical Data (2nd ed.). Oxford: Pergamon (published 1984). Entry 210. ISBN   0-08-029214-3. LCCN   82-16524.
  6. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A23. ISBN   978-0-618-94690-7.
  7. 1 2 3 Sigma-Aldrich Co., Silver(I) oxide. Retrieved on 2014-06-07.
  8. O. Glemser and H. Sauer "Silver Oxide" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1037.
  9. Janssen, D. E.; Wilson, C. V. (1963). "4-Iodoveratrole". Organic Syntheses {{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 4, p. 547.
  10. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  11. Biedermann, George; Sillén, Lars Gunnar (1960). "Studies on the Hydrolysis of Metal Ions. Part 30. A Critical Survey of the Solubility Equilibria of Ag2O". Acta Chemica Scandinavica. 13: 717–725. doi: 10.3891/acta.chem.scand.14-0717 .
  12. US 20050050990A1,Harigae, Kenichi&Shoji, Yoshiyuki,"Fine-grain silver oxide powder",published 2005-03-10
  13. 1 2 Cotton, F. Albert; Wilkinson, Geoffrey (1966). Advanced Inorganic Chemistry (2nd Ed.). New York:Interscience. p. 1042.
  14. General Chemistry by Linus Pauling, 1970 Dover ed. p703-704
  15. Herley, P. J.; Prout, E. G. (1960-04-01). "The Thermal Decomposition of Silver Oxide". Journal of the American Chemical Society. 82 (7): 1540–1543. doi:10.1021/ja01492a006. ISSN   0002-7863.
  16. Merck Index of Chemicals and Drugs Archived 2009-02-01 at the Wayback Machine , 14th ed. monograph 8521
  17. "Duracell PROCELL: The Chemistries: Silver Oxide". web.archive.org. 2009-12-20. Retrieved 2024-05-12.
  18. 裴, 坚 (2017). 基础有机化学[Basic Organic Chemistry] (in Chinese) (4th ed.). p. 1064.
  19. Chakraborty, Debashis; Gowda, Ravikumar R.; Malik, Payal (2009). "Silver nitrate-catalyzed oxidation of aldehydes to carboxylic acids by H2O2". Tetrahedron Letters. 50 (47): 6553–6556. doi:10.1016/j.tetlet.2009.09.044.