Antimony pentoxide

Last updated
Antimony pentoxide
Antimony-pentoxide-xtal-1979-3D-balls.png
Names
IUPAC name
(dioxo-λ5-stibanyl)oxy-dioxo-λ5-stibane
Other names
antimony(V) oxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.853 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 215-237-7
PubChem CID
UNII
  • InChI=1S/5O.2Sb Yes check.svgY
    Key: LJCFOYOSGPHIOO-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/5O.2Sb/rO5Sb2/c1-6(2)5-7(3)4
    Key: LJCFOYOSGPHIOO-YOUOZQPQAC
  • O=[Sb](=O)O[Sb](=O)=O
Properties
Sb2O5
Molar mass 323.517 g/mol
Appearanceyellow, powdery solid
Density 3.78 g/cm3, solid
Melting point 380 °C (716 °F; 653 K) (decomposes)
0.3 g/100 mL
Solubility insoluble in nitric acid
Structure
cubic
Thermochemistry
117.69 J/mol K
–1008.18 kJ/mol
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg GHS-pictogram-rondflam.svg GHS-pictogram-silhouette.svg
Danger
H302, H315, H319, H335, H411
P261, P264, P270, P271, P273, P280, P301+P312, P302+P352, P304+P340, P305+P351+P338, P312, P321, P330, P332+P313, P337+P313, P362, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
3
0
1
OX
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb) [1]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Antimony pentoxide (molecular formula: Sb2O5) is a chemical compound of antimony and oxygen. It contains antimony in the +5 oxidation state.

Contents

Structure

Antimony pentoxide has the same structure as the B form of niobium pentoxide and can be derived from the rutile structure, with antimony coordinated by six oxygen atoms in a distorted octahedral arrangement. The SbO6 octahedra are corner- and edge-sharing. [2]

Antimony-pentoxide-xtal-1979-Sb-coord-3D-balls-O.png Antimony-pentoxide-xtal-1979-O1-coord-B-3D-balls.png Antimony-pentoxide-xtal-1979-O2&3-coord-B-3D-balls.png
Sb coordinationedge sharingcorner sharing

Preparation

The hydrated oxide is prepared by hydrolysis of antimony pentachloride; or by acidification of potassium hexahydroxoantimonate(V). It may also be prepared by oxidation of antimony trioxide with nitric acid. [3]

Uses

Antimony pentoxide finds use as a flame retardant in ABS and other plastics and as a flocculant in the production of titanium dioxide, and is sometimes used in the production of glass, paint and adhesives. [4] [5]

It is also used as an ion exchange resin for a number of cations in acidic solution including Na+ (especially for their selective retentions), and as a polymerization and oxidation catalyst.

Properties and reactions

The hydrated oxide is insoluble in nitric acid, but dissolves in a concentrated potassium hydroxide solution to give potassium hexahydroxoantimonate(V), or KSb(OH)6. [6]

When heated to 700 °C (1,290 °F), the yellow hydrated pentoxide converts to an anhydrous white solid with the formula Sb6O13, containing both antimony(III) and antimony(V). Heating to 900 °C (1,650 °F) produces a white, insoluble powder of Sb2O4 in both α and β forms. The β form consists of antimony(V) in octahedral interstices and pyramidal SbIIIO4 units. In these compounds, the antimony(V) atom is octahedrally coordinated to six hydroxy groups.

The pentoxide can be reduced to antimony metal by heating with hydrogen or potassium cyanide. [7]

Related Research Articles

<span class="mw-page-title-main">Iron(II) oxide</span> Inorganic compound with the formula FeO

Iron(II) oxide or ferrous oxide is the inorganic compound with the formula FeO. Its mineral form is known as wüstite. One of several iron oxides, it is a black-colored powder that is sometimes confused with rust, the latter of which consists of hydrated iron(III) oxide. Iron(II) oxide also refers to a family of related non-stoichiometric compounds, which are typically iron deficient with compositions ranging from Fe0.84O to Fe0.95O.

<span class="mw-page-title-main">Potassium sulfate</span> Chemical compound

Potassium sulfate (US) or potassium sulphate (UK), also called sulphate of potash (SOP), arcanite, or archaically potash of sulfur, is the inorganic compound with formula K2SO4, a white water-soluble solid. It is commonly used in fertilizers, providing both potassium and sulfur.

<span class="mw-page-title-main">Antimony trioxide</span> Chemical compound

Antimony(III) oxide is the inorganic compound with the formula Sb2O3. It is the most important commercial compound of antimony. It is found in nature as the minerals valentinite and senarmontite. Like most polymeric oxides, Sb2O3 dissolves in aqueous solutions with hydrolysis. A mixed arsenic-antimony oxide occurs in nature as the very rare mineral stibioclaudetite.

<span class="mw-page-title-main">Tin(IV) oxide</span> Chemical compound known as stannic oxide, cassiterite and tin ore

Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO2. The mineral form of SnO2 is called cassiterite, and this is the main ore of tin. With many other names, this oxide of tin is an important material in tin chemistry. It is a colourless, diamagnetic, amphoteric solid.

<span class="mw-page-title-main">Phosphoryl chloride</span> Chemical compound

Phosphoryl chloride is a colourless liquid with the formula POCl3. It hydrolyses in moist air releasing phosphoric acid and fumes of hydrogen chloride. It is manufactured industrially on a large scale from phosphorus trichloride and oxygen or phosphorus pentoxide. It is mainly used to make phosphate esters such as tricresyl phosphate.

<span class="mw-page-title-main">Potassium bisulfate</span> Chemical compound

Potassium bisulfate/ Potassium bisulphate is an inorganic compound with the chemical formula KHSO4 and is the potassium acid salt of sulfuric acid. It is a white, water-soluble solid.

<span class="mw-page-title-main">Cobalt(II) fluoride</span> Chemical compound

Cobalt(II) fluoride is a chemical compound with the formula (CoF2). It is a pink crystalline solid compound which is antiferromagnetic at low temperatures (TN=37.7 K) The formula is given for both the red tetragonal crystal, (CoF2), and the tetrahydrate red orthogonal crystal, (CoF2·4H2O). CoF2 is used in oxygen-sensitive fields, namely metal production. In low concentrations, it has public health uses. CoF2 is sparingly soluble in water. The compound can be dissolved in warm mineral acid, and will decompose in boiling water. Yet the hydrate is water-soluble, especially the di-hydrate CoF2·2H2O and tri-hydrate CoF2·3H2O forms of the compound. The hydrate will also decompose with heat.

<span class="mw-page-title-main">Cadmium fluoride</span> Chemical compound

Cadmium fluoride (CdF2) is a mostly water-insoluble source of cadmium used in oxygen-sensitive applications, such as the production of metallic alloys. In extremely low concentrations (ppm), this and other fluoride compounds are used in limited medical treatment protocols. Fluoride compounds also have significant uses in synthetic organic chemistry. The standard enthalpy has been found to be -167.39 kcal. mole−1 and the Gibbs energy of formation has been found to be -155.4 kcal. mole−1, and the heat of sublimation was determined to be 76 kcal. mole−1.

<span class="mw-page-title-main">Arsenic pentoxide</span> Chemical compound

Arsenic pentoxide is the inorganic compound with the formula As2O5. This glassy, white, deliquescent solid is relatively unstable, consistent with the rarity of the As(V) oxidation state. More common, and far more important commercially, is arsenic(III) oxide (As2O3). All inorganic arsenic compounds are highly toxic and thus find only limited commercial applications.

<span class="mw-page-title-main">Aluminium nitrate</span> Chemical compound

Aluminium nitrate is a white, water-soluble salt of aluminium and nitric acid, most commonly existing as the crystalline hydrate, aluminium nitrate nonahydrate, Al(NO3)3·9H2O.

<span class="mw-page-title-main">Beryllium hydroxide</span> Chemical compound

Beryllium hydroxide, Be(OH)2, is an amphoteric hydroxide, dissolving in both acids and alkalis. Industrially, it is produced as a by-product in the extraction of beryllium metal from the ores beryl and bertrandite. The natural pure beryllium hydroxide is rare (in form of the mineral behoite, orthorhombic) or very rare (clinobehoite, monoclinic). When alkali is added to beryllium salt solutions the α-form (a gel) is formed. If this left to stand or boiled, the rhombic β-form precipitates. This has the same structure as zinc hydroxide, Zn(OH)2, with tetrahedral beryllium centers.

<span class="mw-page-title-main">Antimony pentachloride</span> Chemical compound

Antimony pentachloride is a chemical compound with the formula SbCl5. It is a colourless oil, but typical samples are yellowish due to dissolved chlorine. Owing to its tendency to hydrolyse to hydrochloric acid, SbCl5 is a highly corrosive substance and must be stored in glass or PTFE containers.

<span class="mw-page-title-main">Antimony trichloride</span> Chemical compound

Antimony trichloride is the chemical compound with the formula SbCl3. It is a soft colorless solid with a pungent odor and was known to alchemists as butter of antimony.

<span class="mw-page-title-main">Samarium(III) oxide</span> Chemical compound

Samarium(III) oxide (Sm2O3) is a chemical compound. Samarium oxide readily forms on the surface of samarium metal under humid conditions or temperatures in excess of 150°C in dry air. Similar to rust on metallic iron, this oxide layer spalls off the surface of the metal, exposing more metal to continue the reaction. The oxide is commonly white to off yellow in color and is often encountered as a highly fine dust like powder.

<span class="mw-page-title-main">Bismuth chloride</span> Chemical compound

Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory.

<span class="mw-page-title-main">Magnesium bromide</span> Chemical compound

Magnesium bromide is a chemical compound of magnesium and bromine, with the chemical formula MgBr2. It is white and deliquescent crystalline solid. It is often used as a mild sedative and as an anticonvulsant for treatment of nervous disorders. It is water-soluble and somewhat soluble in alcohol. It can be found naturally in small amounts in some minerals such as: bischofite and carnallite, and in sea water, such as that of the Dead Sea.

Arsenic trifluoride is a chemical compound of arsenic and fluorine with the chemical formula AsF3. It is a colorless liquid which reacts readily with water.

<span class="mw-page-title-main">Bismuth(III) sulfide</span> Chemical compound

Bismuth(III) sulfide is a chemical compound of bismuth and sulfur. It occurs in nature as the mineral bismuthinite.

<span class="mw-page-title-main">Beryllium sulfate</span> Chemical compound

Beryllium sulfate normally encountered as the tetrahydrate, [Be(H2O)4]SO4 is a white crystalline solid. It was first isolated in 1815 by Jons Jakob Berzelius. Beryllium sulfate may be prepared by treating an aqueous solution of many beryllium salts with sulfuric acid, followed by evaporation of the solution and crystallization. The hydrated product may be converted to anhydrous salt by heating at 400 °C.

<span class="mw-page-title-main">Mercury(I) nitrate</span> Chemical compound

Mercury(I) nitrate is an inorganic compound, a salt of mercury and nitric acid with the formula Hg2(NO3)2. A yellow solid, the compound is used as a precursor to other Hg22+ complexes. The structure of the hydrate has been determined by X-ray crystallography. It consists of a [H2O-Hg-Hg-OH2]2+ center, with a Hg-Hg distance of 254 pm.

References

  1. 1 2 NIOSH Pocket Guide to Chemical Hazards. "#0036". National Institute for Occupational Safety and Health (NIOSH).
  2. M. Jansen (March 1979). "Die Kristallstruktur von Antimon(V)-oxid". Acta Crystallogr. B. 35 (3): 539–542. Bibcode:1979AcCrB..35..539J. doi:10.1107/S056774087900409X.
  3. Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN   0-07-049439-8
  4. Bartlett, Jeffrey (1997-03-19). "Colloidal Antimony Pentoxide in Flame Retarded ABS". Nyacol Products, Inc. Archived from the original on 3 August 2006. Retrieved 2006-07-28.
  5. "ANTIMONY PENTOXIDE". chemicalLAND21.com. Archived from the original on 27 August 2006. Retrieved 2006-07-28.
  6. Pradyot Patnaik (2002). Handbook of Inorganic Chemicals. McGraw-Hill. p. 54. ISBN   0-07-049439-8.
  7. "Antimony" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 606.