Pentaphenylantimony

Last updated
Pentaphenylantimony
Pentaphenylantimony.svg
Names
Preferred IUPAC name
Pentaphenyl-λ5-stibane
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/5C6H5.Sb/c5*1-2-4-6-5-3-1;/h5*1-5H;
    Key: XJQGITRIKZCKRF-UHFFFAOYSA-N
  • C1=CC=C(C=C1)[Sb](C2=CC=CC=C2)(C3=CC=CC=C3)(C4=CC=CC=C4)C5=CC=CC=C5
Properties
C30H25Sb
Molar mass 507.290 g·mol−1
Related compounds
Other cations
PPh5
AsPh5
BiPh5
Related compounds
Pentamethylantimony
Pentaethylantimony
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pentaphenylantimony is an organoantimony compound containing five phenyl groups attached to one antimony atom. It has formula Sb(C6H5)5 (or SbPh5).

Contents

Properties

The solid is colourless and melts at 169-170°C. [1]

As a solid the pure form crystallises with a roughly square pyramidal shape. It can also form solvate complexes with cyclohexane or tetrahydrofuran—but not with diethyl ether—which form crystals with a trigonal bipyramid shape. [2] When dissolved, molecules are also trigonal bipyramidal. [2] However with nuclear magnetic resonance, in solution, the phenyl groups all appear to be equivalent. This is probably because the molecule is not stable in shape and orientation of phenyl changes rapidly. [3]

Solid pure pentaphenylantimony forms triclinic crystals in the P1 space group. The unit cell has a=10.286 b=10.600 and c=13.594 Å, α=79.20° β=70.43° γ=119.52°. The basal Sb-C bond length is 2.216 Å whereas the apex Sb-C length is 2.115 Å. [1]

Reactions

Pentaphenylantimony reacts with a variety of reagents that replace one or more phenyl groups with a different substituent. Reagents with acidic hydrogen give benzene as byproduct, whereas dihalogens (or synthons of them) give the analogous halobenzene as byproduct:

Ph5Sb + HOR → PhH + Ph4SbOR
Ph5Sb + HX → PhH + Ph4SbX
Ph5Sb + X2 → PhX + Ph4SbX

For example, pentaphenylantimony reacts with dicarboxylic acids in solution, by substituting a phenyl group with the acid hydrogen. This yields a tetraphenyl antimony or bis(tetraphenyl antimony) compound. [4] [5] [6] [7]

When heated, pentaphenylantimony forms triphenylstibine, biphenyl and p-quaterphenyl. [8]

Pentaphenylantimony reacts with bromine to make bromobenzene and tetraphenylstibonium bromide. With hydrogen bromide, tetraphenylstibonium bromide along with benzene is the result. Pentaphenylantimony reacts with methanol to make methoxytetraphenylantimony and dimethoxytriphenylantimony. A reaction with carbon tetrachloride yields tetraphenylstibonium chloride, chlorobenzene, and benzene. All these reactions appear to involve forming the phenyl radical. [8]

Formation

Pentaphenylantimony can be formed by reacting dichlorotriphenylantimony with phenyl lithium. [1]

Related Research Articles

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction between an acid and a base

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

In chemistry, a superacid (according to the original definition) is an acid with an acidity greater than that of 100% pure sulfuric acid (H2SO4), which has a Hammett acidity function (H0) of −12. According to the modern definition, a superacid is a medium in which the chemical potential of the proton is higher than in pure sulfuric acid. Commercially available superacids include trifluoromethanesulfonic acid (CF3SO3H), also known as triflic acid, and fluorosulfuric acid (HSO3F), both of which are about a thousand times stronger (i.e. have more negative H0 values) than sulfuric acid. Most strong superacids are prepared by the combination of a strong Lewis acid and a strong Brønsted acid. A strong superacid of this kind is fluoroantimonic acid. Another group of superacids, the carborane acid group, contains some of the strongest known acids. Finally, when treated with anhydrous acid, zeolites (microporous aluminosilicate minerals) will contain superacidic sites within their pores. These materials are used on massive scale by the petrochemical industry in the upgrading of hydrocarbons to make fuels.

<span class="mw-page-title-main">Phosphorus pentachloride</span> Chemical compound

Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

<span class="mw-page-title-main">Magic acid</span> Chemical compound

Magic acid (FSO3H·SbF5) is a superacid consisting of a mixture, most commonly in a 1:1 molar ratio, of fluorosulfuric acid (HSO3F) and antimony pentafluoride (SbF5). This conjugate Brønsted–Lewis superacid system was developed in the 1960s by the George Olah lab at Case Western Reserve University, and has been used to stabilize carbocations and hypercoordinated carbonium ions in liquid media. Magic acid and other superacids are also used to catalyze isomerization of saturated hydrocarbons, and have been shown to protonate even weak bases, including methane, xenon, halogens, and molecular hydrogen.

<span class="mw-page-title-main">Tantalum(V) chloride</span> Chemical compound

Tantalum(V) chloride, also known as tantalum pentachloride, is an inorganic compound with the formula TaCl5. It takes the form of a white powder and is commonly used as a starting material in tantalum chemistry. It readily hydrolyzes to form tantalum(V) oxychloride (TaOCl3) and eventually tantalum pentoxide (Ta2O5); this requires that it be synthesised and manipulated under anhydrous conditions, using air-free techniques.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

Antimony pentafluoride is the inorganic compound with the formula SbF5. This colourless, viscous liquid is a strong Lewis acid and a component of the superacid fluoroantimonic acid, formed upon mixing liquid HF with liquid SbF5 in 1:1 ratio. It is notable for its strong Lewis acidity and the ability to react with almost all known compounds.

<span class="mw-page-title-main">Fluoroantimonic acid</span> Chemical compound

Fluoroantimonic acid is a mixture of hydrogen fluoride and antimony penta­fluoride, containing various cations and anions. This mixture is a superacid that, in terms of corrosiveness, is trillions of times stronger than 100% sulfuric acid in terms of its protonating ability measured by Hammett function. It even protonates some hydro­carbons to afford pentacoordinate carbo­cations. Like its precursor hydrogen fluoride, it attacks glass, but can be stored in containers lined with PTFE (Teflon) or PFA.

<span class="mw-page-title-main">Antimony pentachloride</span> Chemical compound

Antimony pentachloride is a chemical compound with the formula SbCl5. It is a colourless oil, but typical samples are yellowish due to dissolved chlorine. Owing to its tendency to hydrolyse to hydrochloric acid, SbCl5 is a highly corrosive substance and must be stored in glass or PTFE containers.

<span class="mw-page-title-main">Antimony trichloride</span> Chemical compound

Antimony trichloride is the chemical compound with the formula SbCl3. It is a soft colorless solid with a pungent odor and was known to alchemists as butter of antimony.

<span class="mw-page-title-main">Bis(benzene)chromium</span> Chemical compound

Bis(benzene)chromium is the organometallic compound with the formula Cr(η6-C6H6)2. It is sometimes called dibenzenechromium. The compound played an important role in the development of sandwich compounds in organometallic chemistry and is the prototypical complex containing two arene ligands.

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

<span class="mw-page-title-main">Lithium bis(trimethylsilyl)amide</span> Chemical compound

Lithium bis(trimethylsilyl)amide is a lithiated organosilicon compound with the formula LiN(Si(CH3)3)2. It is commonly abbreviated as LiHMDS or Li(HMDS) (lithium hexamethyldisilazide - a reference to its conjugate acid HMDS) and is primarily used as a strong non-nucleophilic base and as a ligand. Like many lithium reagents, it has a tendency to aggregate and will form a cyclic trimer in the absence of coordinating species.

<span class="mw-page-title-main">Berkelium compounds</span> Any chemical compound having at least one berkelium atom

Berkelium forms a number of chemical compounds, where it normally exists in an oxidation state of +3 or +4, and behaves similarly to its lanthanide analogue, terbium. Like all actinides, berkelium easily dissolves in various aqueous inorganic acids, liberating gaseous hydrogen and converting into the trivalent oxidation state. This trivalent state is the most stable, especially in aqueous solutions, but tetravalent berkelium compounds are also known. The existence of divalent berkelium salts is uncertain and has only been reported in mixed lanthanum chloride-strontium chloride melts. Aqueous solutions of Bk3+ ions are green in most acids. The color of the Bk4+ ions is yellow in hydrochloric acid and orange-yellow in sulfuric acid. Berkelium does not react rapidly with oxygen at room temperature, possibly due to the formation of a protective oxide surface layer; however, it reacts with molten metals, hydrogen, halogens, chalcogens and pnictogens to form various binary compounds. Berkelium can also form several organometallic compounds.

Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

<span class="mw-page-title-main">Pentamethylantimony</span> Chemical compound

Pentamethylantimony or pentamethylstiborane is an organometalllic compound containing five methyl groups bound to an antimony atom with formula Sb(CH3)5. It is an example of a hypervalent compound. The molecular shape is trigonal bipyramid. Some other antimony(V) organometallic compounds include pentapropynylantimony (Sb(CCCH3)5) and pentaphenyl antimony (Sb(C6H5)5). Other known pentamethyl-pnictides include pentamethylbismuth and pentamethylarsenic.

<span class="mw-page-title-main">(Diacetoxyiodo)benzene</span> Chemical compound

(Diacetoxyiodo)benzene, also known as phenyliodine(III) diacetate (PIDA) is a hypervalent iodine chemical with the formula C
6
H
5
I(OCOCH
3
)
2
. It is used as an oxidizing agent in organic chemistry.

Among pnictogen group Lewis acidic compounds, unusual lewis acidity of Lewis acidic antimony compounds have long been exploited as both stable conjugate acids of non-coordinating anions, and strong Lewis acid counterparts of well-known superacids. Also, Lewis-acidic antimony compounds have recently been investigated to extend the chemistry of boron because of the isolobal analogy between the vacant p orbital of borane and σ*(Sb–X) orbitals of stiborane, and the similar electronegativities of antimony (2.05) and boron (2.04).

Gallium monoiodide is an inorganic gallium compound with the formula GaI or Ga4I4. It is a pale green solid and mixed valent gallium compound, which can contain gallium in the 0, +1, +2, and +3 oxidation states. It is used as a pathway for many gallium-based products. Unlike the gallium(I) halides first crystallographically characterized, gallium monoiodide has a more facile synthesis allowing a synthetic route to many low-valent gallium compounds.

<span class="mw-page-title-main">Pentaphenylphosphorus</span> Chemical compound

Pentaphenylphosphorus is an organic phosphorane containing five phenyl groups connected to a central phosphorus atom. The phosphorus atom is considered to be in the +5 oxidation state. The chemical formula could be written as P(C6H5)5 or Ph5P, where Ph represents the phenyl group. It was discovered and reported in 1949 by Georg Wittig.

References

  1. 1 2 3 Beauchamp, A. L.; Bennett, Michael J.; Cotton, F. Albert (November 1968). "A reinvestigation of the crystal and molecular structure of pentaphenylantimony". Journal of the American Chemical Society. 90 (24): 6675–6680. doi:10.1021/ja01026a020.
  2. 1 2 Lindquist-Kleissler, Brent; Weng, Monica; Le Magueres, Pierre; George, Graham N.; Johnstone, Timothy C. (2021-06-21). "Geometry of Pentaphenylantimony in Solution: Support for a Trigonal Bipyramidal Assignment from X-ray Absorption Spectroscopy and Vibrational Spectroscopic Data". Inorganic Chemistry. 60 (12): 8566–8574. doi:10.1021/acs.inorgchem.1c00496. ISSN   0020-1669. PMID   34087066. S2CID   235346648.
  3. Beattie, I. R.; Livingston, K. M. S.; Ozin, G. A.; Sabine, R. (1972). "The shape of pentaphenylantimony and pentaphenylarsenic in solution". Journal of the Chemical Society, Dalton Transactions (7): 784. doi:10.1039/DT9720000784.
  4. Sharutin, Vladimir V.; Sharutina, Olga K.; Pakusina, Antonida P.; Belsky, Vitaly K. (May 1997). "Reactions of pentaphenylantimony with dicarboxylic acids". Journal of Organometallic Chemistry. 536–537: 87–92. doi:10.1016/S0022-328X(96)06463-7.
  5. Sharutin, V. V.; Sharutina, O. K.; Gubanova, Yu. O.; El'tsov, O. S. (September 2019). "Specific Features of the Reaction between Pentaphenylantimony and Bifunctional Acids: Structures of Bis(tetraphenylantimony) Glutarate, Benzene Solvate of Bis(tetraphenylantimony) 1,4-Cyclohexanedicarboxylate, Dioxane Solvate of Triphenylantimony Hydroxybenzoate, and Triphenylantimony 3-Hydroxybenzoate Adduct with Tetraphenylantimony Tetraphenylstiboxybenzaote and Toluene". Russian Journal of Inorganic Chemistry. 64 (9): 1138–1145. doi:10.1134/S0036023619090195. S2CID   203852991.
  6. Sharutin, Vladimir V.; Sharutina, Olga K.; Gubanova, Yulia O.; Bregadze, Vladimir I.; Glazun, Sergey A. (December 2015). "Interaction of pentaphenylantimony with carboranedicarboxylic acid". Journal of Organometallic Chemistry. 798: 41–45. doi:10.1016/j.jorganchem.2015.09.002.
  7. Razuvaev, G.; Sharutin, V (2015). "Some reactions of bis(cyclopentadienyl)diferrocenyltitan". "Bulletin of the South Ural State University Series "Chemistry"". 15 (4): 9–12. doi: 10.14529/chem150403 .
  8. 1 2 Shen, Kei-Wei; McEwen, William E.; Wolf, Alfred Peter (March 1969). "Photolysis and thermolysis of pentaphenylantimony in benzene". Journal of the American Chemical Society. 91 (6): 1283–1288. doi:10.1021/ja01034a003.

Further reading