Triphenylstibine

Last updated
Triphenylstibine
Triphenylstibine-3D-balls.png
Triphenylstibine crystals.jpg
Names
Preferred IUPAC name
Triphenylstibane
Other names
Triphenylantimony
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.009.125 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 210-037-6
PubChem CID
RTECS number
  • WJ1400000
UNII
  • InChI=1S/3C6H5.Sb/c3*1-2-4-6-5-3-1;/h3*1-5H; Yes check.svgY
    Key: HVYVMSPIJIWUNA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/3C6H5.Sb/c3*1-2-4-6-5-3-1;/h3*1-5H;/rC18H15Sb/c1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18/h1-15H
    Key: HVYVMSPIJIWUNA-KWOBPOEBAA
  • c3c([Sb](c1ccccc1)c2ccccc2)cccc3
Properties
C18H15Sb
Molar mass 353.07 g/mol
AppearanceColourless solid
Density 1.53 g/cm3
Melting point 52 to 54 °C (126 to 129 °F; 325 to 327 K)
Boiling point 377 °C (711 °F; 650 K)
insoluble
Structure
trigonal pyramidal
Hazards
Main hazards mildly toxic
GHS classification and labelling: [1]
GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Danger
H301, H302, H332, H411
P261, P264, P270, P271, P273, P301+P310, P301+P312, P304+P312, P304+P340, P312, P330, P391, P405
NFPA 704 (fire diamond)
1
Related compounds
Related compounds
Triphenylphosphine
Triphenylarsine
Stibine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Triphenylstibine is the chemical compound with the formula Sb(C6H5)3. Abbreviated SbPh3, this colourless solid is often considered the prototypical organoantimony compound. It is used as a ligand in coordination chemistry [2] and as a reagent in organic synthesis.

Like the related molecules triphenylphosphine and triphenylarsine, SbPh3 is pyramidal with a propeller-like arrangement of the phenyl groups. The Sb-C distances average 2.14-2.17 Å and the C-Sb-C angle are 95°. [3]

SbPh3 was first reported in 1886, being prepared from antimony trichloride by the reaction: [4]

6 Na + 3 C6H5Cl + SbCl3 → (C6H5)3Sb + 6 NaCl

An alternative method treats phenylmagnesium bromide with SbCl3. [5]


Related Research Articles

Benzonitrile is the chemical compound with the formula C6H5(CN), abbreviated PhCN. This aromatic organic compound is a colorless liquid with a sweet bitter almond odour. It is mainly used as a precursor to the resin benzoguanamine.

Stibine Chemical compound

Stibine (IUPAC name: stibane) is a chemical compound with the formula SbH3. A pnictogen hydride, this colourless gas is the principal covalent hydride of antimony, and a heavy analogue of ammonia. The molecule is pyramidal with H–Sb–H angles of 91.7° and Sb–H distances of 170.7 pm (1.707 Å). This gas has an offensive smell like hydrogen sulfide (rotten eggs).

Antimony oxychloride Chemical compound

Antimony oxychloride, known since the 15th century, has been known by a plethora of alchemical names. Since the compound functions as both an emetic and a laxative, it was originally used as a purgative.

Antimony pentachloride Chemical compound

Antimony pentachloride is a chemical compound with the formula SbCl5. It is a colourless oil, but typical samples are yellowish due to dissolved chlorine. Owing to its tendency to hydrolyse to hydrochloric acid, SbCl5 is a highly corrosive substance and must be stored in glass or PTFE containers.

Antimony trichloride Chemical compound

Antimony trichloride is the chemical compound with the formula SbCl3. It is a soft colorless solid with a pungent odor and was known to alchemists as butter of antimony.

Organomercury

Organomercury refers to the group of organometallic compounds that contain mercury. Typically the Hg–C bond is stable toward air and moisture but sensitive to light. Important organomercury compounds are the methylmercury(II) cation, CH3Hg+; ethylmercury(II) cation, C2H5Hg+; dimethylmercury, (CH3)2Hg, diethylmercury, and merbromin ("Mercurochrome"). Thiomersal is used as a preservative for vaccines and intravenous drugs.

Antimony triiodide Chemical compound

Antimony triiodide is the chemical compound with the formula SbI3. This ruby-red solid is the only characterized "binary" iodide of antimony, i.e. the sole compound isolated with the formula SbxIy. It contains antimony in its +3 oxidation state. Like many iodides of the heavier main group elements, its structure depends on the phase. Gaseous SbI3 is a molecular, pyramidal species as anticipated by VSEPR theory. In the solid state, however, the Sb center is surrounded by an octahedron of six iodide ligands, three of which are closer and three more distant. For the related compound BiI3, all six Bi—I distances are equal.

Antimony trifluoride is the inorganic compound with the formula SbF3. Sometimes called Swarts' reagent, is one of two principal fluorides of antimony, the other being SbF5. It appears as a white solid. As well as some industrial applications, it is used as a reagent in inorganic and organofluorine chemistry.

Triphenylarsine Chemical compound

Triphenylarsine is the chemical compound with the formula As(C6H5)3. This organoarsenic compound, often abbreviated AsPh3, is a colorless crystalline solid that is used as a ligand and a reagent in coordination chemistry and organic synthesis. The molecule is pyramidal with As-C distances of 1.942–1.956 Å and C-As-C angles of 99.6–100.5°.

Organoaluminium chemistry

Organoaluminium chemistry is the study of compounds containing bonds between carbon and aluminium. It is one of the major themes within organometallic chemistry. Illustrative organoaluminium compounds are the dimer trimethylaluminium, the monomer triisobutylaluminium, and the titanium-aluminium compound called Tebbe's reagent. The behavior of organoaluminium compounds can be understood in terms of the polarity of the C−Al bond and the high Lewis acidity of the three-coordinated species. Industrially, these compounds are mainly used for the production of polyolefins.

Phenylarsonic acid Chemical compound

Phenylarsonic acid is the chemical compound with the formula C6H5AsO(OH)2, commonly abbreviated PhAsO3H2. This colourless solid is an organic derivative of arsenic acid, AsO(OH)3, where one OH group has been replaced by a phenyl group. The compound is a buffering agent and a precursor to other organoarsenic compounds, some of which are used in animal nutrition, e.g. 4-hydroxy-3-nitrobenzenearsonic acid.

Antimony pentasulfide is an inorganic compound of antimony and sulfur, also known as antimony red. It is a nonstoichiometric compound with a variable composition. Its exact structure is unknown. Commercial samples are usually contaminated with sulfur, which may be removed by washing with carbon disulfide in a Soxhlet extractor.

Iodane generally refers to any organic derivative of iodine. Without modifier, iodane is the systematic name for the parent hydride of iodine, HI. Thus, any organoiodine compound with general formula RI (e.g., CH3I or C6H5I) is a substituted iodane. However, as used in the context of organic synthesis, the term iodane more specifically refers to organoiodine compounds with nonstandard bond number (i.e., bond number greater than one), making this term a synonym for hypervalent iodine. These iodine compounds are hypervalent because the iodine atom formally contains more than the 8 electrons in the valence shell required for the octet rule. When iodine is ligated to an organic residue and electronegative ligands (e.g. halides or carboxylates), hypervalent iodine compounds occur with a +3 oxidation number as iodine(III) or λ3-iodanes or as a +5 oxidation number as iodine(V) or λ5-iodanes. (Here, lambda convention is used to give the nonstandard bond number.)

Organoantimony chemistry is the chemistry of compounds containing a carbon to antimony (Sb) chemical bond. Relevant oxidation states are Sb(V) and Sb(III). The toxicity of antimony limits practical application in organic chemistry.

Organosodium chemistry is the chemistry of organometallic compounds containing a carbon to sodium chemical bond. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity.

Organosilver chemistry in chemistry of compounds containing a carbon to silver chemical bond. The theme is less developed than organocopper chemistry.

Metal halides

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

Antimony potassium tartrate Chemical compound

Antimony potassium tartrate, also known as potassium antimonyl tartrate, potassium antimontarterate, or emetic tartar, has the formula K2Sb2(C4H2O6)2. The compound has long been known as a powerful emetic, and was used in the treatment of schistosomiasis and leishmaniasis. It is used as a resolving agent. It typically is obtained as a hydrate.

Tungsten(IV) chloride is an inorganic compound with the formula WCl4. It is a diamagnetic black solid. The compound is of interest in research as one of a handful of binary tungsten chlorides.

Among pnictogen group Lewis acidic compounds, unusual lewis acidity of Lewis acidic antimony compounds have long been exploited as both stable conjugate acids of non-coordinating anions, and strong Lewis acid counterparts of well-known superacids. Also, Lewis-acidic antimony compounds have recently been investigated to extend the chemistry of boron because of the isolobal analogy between the vacant p orbital of borane and σ*(Sb–X) orbitals of stiborane, and the similar electronegativities of antimony (2.05) and boron (2.04).

References

  1. "Triphenylantimony". pubchem.ncbi.nlm.nih.gov. Retrieved 12 December 2021.
  2. C. A. McAuliffe, ed. (1973). Transition Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands. J. Wiley. ISBN   0-470-58117-4.
  3. Adams, E. A.; Kolis, J. W.; Pennington, W. T. "Structure of triphenylstibine" Acta Crystallographica 1990, volume C46, pp. 917-919. doi : 10.1107/S0108270189012862
  4. Michaelis, A.; Reese, A. "Ueber die Verbindungen der Elemente der Stickstoffgruppe mit den Radicalen der aromatischen Reihe. Achte Abhandlung Ueber aromatische Antimonverbindungen" Liebigs Annallen der Chemie volume 233, pages 39-60 (1886). doi : 10.1002/jlac.18862330104.
  5. Hiers, G. S. (1927). "Triphenylstibine". Organic Syntheses. 7: 80. doi:10.15227/orgsyn.007.0080.