Antimony triiodide

Last updated
Antimony triiodide
Antimony-triiodide-from-xtal-3D-balls.png
SbIstructure.jpg
Antimoon kwalitatieve analyse.png
Names
IUPAC name
Antimony triiodide, Antimony(III) iodide
Systematic IUPAC name
Triiodostibane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.278 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 232-205-8
PubChem CID
UNII
  • InChI=1S/3HI.Sb/h3*1H;/q;;;+3/p-3 Yes check.svgY
    Key: KWQLUUQBTAXYCB-UHFFFAOYSA-K Yes check.svgY
  • InChI=1/3HI.Sb.3H/h3*1H;;;;/q;;;+3;;;/p-3/r3HI.H3Sb/h3*1H;1H3/q;;;+3/p-3
    Key: JYIUOADDPFDEAV-GODZFDHEAT
  • InChI=1/3HI.Sb/h3*1H;/q;;;+3/p-3
    Key: KWQLUUQBTAXYCB-DFZHHIFOAA
  • [SbH3+3].[I-].[I-].[I-]
  • I[Sb](I)I
Properties
I3Sb
Molar mass 502.473 g·mol−1
Appearancered crystals
Density 4.921 g/cm3
Melting point 170.5 °C (338.9 °F; 443.6 K)
Boiling point 401.6 °C (754.9 °F; 674.8 K)
soluble, partially hydrolyses
Solubility soluble in benzene, alcohol, acetone, CS2, HCl, KI, SnCl4, C2H7N
,HI,alkali metal triiodides
insoluble in CHCl3, CCl4  [1] 
Solubility in diiodomethane 10.15% v/v (12 °C) [2]
-147.0·10−6 cm3/mol
Structure
Rhombohedral, hR24,
R-3, No. 148
1.58 D
Thermochemistry
81.6 J/mol·K (gas) [1]
-100.4 kJ/mol [1]
Hazards
GHS labelling: [3]
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H302, H332, H411
P273
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb) [4]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb) [4]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Antimony triiodide cristalline Iodid sur'my kristallicheskii.jpg
Antimony triiodide cristalline
Antimony triiodide milled Iodid sur'my rastiortyi.jpg
Antimony triiodide milled

Antimony triiodide is the chemical compound with the formula Sb I3. This ruby-red solid is the only characterized "binary" iodide of antimony, i.e. the sole compound isolated with the formula SbxIy. It contains antimony in its +3 oxidation state. Like many iodides of the heavier main group elements, its structure depends on the phase. Gaseous SbI3 is a molecular, pyramidal species as anticipated by VSEPR theory. In the solid state, however, the Sb center is surrounded by an octahedron of six iodide ligands, three of which are closer and three more distant. [5] For the related compound BiI3, all six Bi—I distances are equal. [6]

Contents

Production

It may be formed by the reaction of antimony with elemental iodine, or the reaction of antimony trioxide with hydroiodic acid.

Alternatively, it may be prepared by the interaction of antimony and iodine in boiling benzene or tetrachloroethane.

Uses

SbI3 has been used as a dopant in the preparation of thermoelectric materials. [7]

Related Research Articles

<span class="mw-page-title-main">Nitrogen triiodide</span> Chemical compound

Nitrogen triiodide is an inorganic compound with the formula NI3. It is an extremely sensitive contact explosive: small quantities explode with a loud, sharp snap when touched even lightly, releasing a purple cloud of iodine vapor; it can even be detonated by alpha radiation. NI3 has a complex structural chemistry that is difficult to study because of the instability of the derivatives. Although nitrogen is more electronegative than iodine, the compound was so named due to its analogy to the compound nitrogen trichloride.

<span class="mw-page-title-main">Triiodide</span> Ion

In chemistry, triiodide usually refers to the triiodide ion, I
3
. This anion, one of the polyhalogen ions, is composed of three iodine atoms. It is formed by combining aqueous solutions of iodide salts and iodine. Some salts of the anion have been isolated, including thallium(I) triiodide (Tl+[I3]) and ammonium triiodide ([NH4]+[I3]). Triiodide is observed to be a red colour in solution.

Antimony pentafluoride is the inorganic compound with the formula SbF5. This colourless, viscous liquid is a strong Lewis acid and a component of the superacid fluoroantimonic acid, formed upon mixing liquid HF with liquid SbF5 in 1:1 ratio. It is notable for its strong Lewis acidity and the ability to react with almost all known compounds.

Terbium(III) iodide (TbI3) is an inorganic chemical compound.

<span class="mw-page-title-main">Bismuth(III) iodide</span> Chemical compound

Bismuth(III) iodide is the inorganic compound with the formula BiI3. This gray-black salt is the product of the reaction of bismuth and iodine, which once was of interest in qualitative inorganic analysis.

<span class="mw-page-title-main">Arsenic triiodide</span> Chemical compound

Arsenic triiodide is the inorganic compound with the formula AsI3. It is an orange to dark red solid that readily sublimes. It is a pyramidal molecule that is useful for preparing organoarsenic compounds.

<span class="mw-page-title-main">Antimony telluride</span> Chemical compound

Antimony telluride is an inorganic compound with the chemical formula Sb2Te3. As is true of other pnictogen chalcogenide layered materials, it is a grey crystalline solid with layered structure. Layers consist of two atomic sheets of antimony and three atomic sheets of tellurium and are held together by weak van der Waals forces. Sb2Te3 is a narrow-gap semiconductor with a band gap 0.21 eV; it is also a topological insulator, and thus exhibits thickness-dependent physical properties.

<span class="mw-page-title-main">Molybdenum(III) iodide</span> Chemical compound

Molybdenum(III) iodide is the inorganic compound with the formula MoI3.

<span class="mw-page-title-main">Chromium(III) iodide</span> Chemical compound

Chromium(III) iodide, also known as chromium triiodide, is an inorganic compound with the formula CrI3. It is a black solid that is used to prepare other chromium iodides.

<span class="mw-page-title-main">Scandium triiodide</span> Chemical compound

Scandium triiodide, also known as scandium iodide, is an inorganic compound with the formula ScI3 and is classified as a lanthanide iodide. This salt is a yellowish powder. It is used in metal halide lamps together with similar compounds, such as caesium iodide, because of their ability to maximize emission of UV and to prolong bulb life. The maximized UV emission can be tuned to a range that can initiate photopolymerizations.

Americium(III) iodide or americium triiodide is the chemical compound, a salt composed of americium and iodine with the formula AmI3.

<span class="mw-page-title-main">Indium(III) iodide</span> Chemical compound

Indium(III) iodide or indium triiodide is a chemical compound of indium and iodine with the formula InI3.

Samarium(III) iodide is an inorganic compound, a salt of samarium and hydroiodic acid with the chemical formula SmI
3
.

Neodymium(III) iodide is an inorganic salt of iodine and neodymium with the formula NdI3. Neodymium uses the +3 oxidation state in the compound. The anhydrous compound is a green powdery solid at room temperature.

<span class="mw-page-title-main">Praseodymium(III) iodide</span> Chemical compound

Praseodymium(III) iodide is an inorganic salt, consisting of the rare-earth metal praseodymium and iodine, with the chemical formula PrI3. It forms green crystals. It is soluble in water.

<span class="mw-page-title-main">Lanthanum(III) iodide</span> Chemical compound

Lanthanum(III) iodide is an inorganic compound containing lanthanum and iodine with the chemical formula LaI
3
.

Protactinium(V) iodide is an inorganic compound, with the chemical formula of PaI5.

Europium(III) iodide is an inorganic compound containing europium and iodine with the chemical formula EuI3.

<span class="mw-page-title-main">Lutetium(III) iodide</span> Chemical compound

Lutetium(III) iodide or lutetium iodide is an inorganic compound consisting of iodine and lutetium, with the chemical formula of LuI3.

<span class="mw-page-title-main">Hafnium(III) iodide</span> Chemical compound

Hafnium(III) iodide is an inorganic compound of hafnium and iodine with the formula Hf I3. It is a black solid.

References

  1. 1 2 3 "Antimony triiodide".
  2. Seidell, Atherton; Linke, William F. (1952). Solubilities of Inorganic and Organic Compounds. Van Nostrand. Retrieved 18 May 2017.
  3. Sigma-Aldrich Co., Antimony(III) iodide. Retrieved on 2014-05-29.
  4. 1 2 NIOSH Pocket Guide to Chemical Hazards. "#0036". National Institute for Occupational Safety and Health (NIOSH).
  5. Hsueh, H.C.; Chen, R.K.; Vass, H.; Clark, S.J.; Ackland, G.J.; Poon, W.C.K.; Crain, J. (1998). "Compression mechanisms in quasimolecular XI3 (X = As, Sb, Bi) solids" (PDF). Physical Review B. 58 (22): 14812–14822. Bibcode:1998PhRvB..5814812H. doi:10.1103/PhysRevB.58.14812. hdl: 20.500.11820/6b565e3e-900c-465c-a037-6929e8a7c18b . S2CID   121883973.
  6. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  7. D.-Y. Chung; T. Hogan; P. Brazis; M. Rocci-Lane; C. Kannewurf; M. Bastea; C. Uher; M. G. Kanatzidis (2000). "CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications". Science. 287 (5455): 1024–7. Bibcode:2000Sci...287.1024C. doi:10.1126/science.287.5455.1024. PMID   10669411.