Europium(III) iodide

Last updated
Europium(III) iodide [1]
Names
IUPAC name
Europium(III) iodide
Other names
Europium triiodide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.941 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 244-721-0
PubChem CID
  • InChI=1S/Eu.3HI/h;3*1H/q+3;;;/p-3
    Key: OEGMUYNEEQNVBV-UHFFFAOYSA-K
  • [I-].[I-].[I-].[Eu+3]
Properties
EuI
3
Molar mass 532.677 g mol−1
Appearancecolourless crystals [2]
Melting point decomposes [1]
Structure [1] [3] [4]
BiI3
octahedral
Related compounds
Other anions
EuF3, EuCl3, EuBr3
Other cations
SmI3, GdI3
Related compounds
EuI2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Europium(III) iodide is an inorganic compound containing europium and iodine with the chemical formula EuI3. [1]

Contents

Preparation

Europium metal reacts directly with iodine to form europium(III) iodide: [5]

2 Eu + 3 I2 → 2 EuI3

Hydrated europium(III) iodide can be prepared dissolving europium(III) oxide or europium(III) carbonate in hydroiodic acid: [1] [6]

Eu2O3 + 6 HI + 6 H2O → 2 EuI3·9H2O

Europium powder reacts with iodine in THF to form a THF adduct of europium(III) iodide: [7] [8]

2 Eu + 3 I2 + 7 THF → [EuI2(THF)5][EuI4(THF)2]

The adduct can be formulated more simply as EuI3(THF)3.5.

Structure

Europium(III) iodide adopts the bismuth(III) iodide (BiI3) crystal structure type, [3] [4] with octahedral coordination of each Eu3+ ion by 6 iodide ions. [1]

Reactivity

Europium(III) iodide is used as the starting material for two of the main ways of preparing europium(II) iodide: [9]

Reduction with hydrogen gas at 350 °C:

2 EuI3 + H2 → 2 EuI2 + 2 HI

Thermal decomposition [1] at 200 °C, a disproportionation reaction:

2 EuI3 → 2 EuI2 + 2 I2

Europium(III) iodide nonahydrate, EuI3·9H2O, thermally decomposes to europium(II) iodide dihydrate, EuI2·H2O. [10]

Related Research Articles

<span class="mw-page-title-main">Europium</span> Chemical element, symbol Eu and atomic number 63

Europium is a chemical element; it has symbol Eu and atomic number 63. Europium is a silvery-white metal of the lanthanide series that reacts readily with air to form a dark oxide coating. It is the most chemically reactive, least dense, and softest of the lanthanide elements. It is soft enough to be cut with a knife. Europium was isolated in 1901 and named after the continent of Europe. Europium usually assumes the oxidation state +3, like other members of the lanthanide series, but compounds having oxidation state +2 are also common. All europium compounds with oxidation state +2 are slightly reducing. Europium has no significant biological role and is relatively non-toxic compared to other heavy metals. Most applications of europium exploit the phosphorescence of europium compounds. Europium is one of the rarest of the rare-earth elements on Earth.

<span class="mw-page-title-main">Samarium(II) iodide</span> Chemical compound

Samarium(II) iodide is an inorganic compound with the formula SmI2. When employed as a solution for organic synthesis, it is known as Kagan's reagent. SmI2 is a green solid and solutions are green as well. It is a strong one-electron reducing agent that is used in organic synthesis.

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Hydrogen iodide</span> Chemical compound

Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent.

<span class="mw-page-title-main">Scandium chloride</span> Chemical compound

Scandium(III) chloride is the inorganic compound with the formula ScCl3. It is a white, high-melting ionic compound, which is deliquescent and highly water-soluble. This salt is mainly of interest in the research laboratory. Both the anhydrous form and hexahydrate (ScCl3•6H2O) are commercially available.

Terbium(III) iodide (TbI3) is an inorganic chemical compound.

Vanadium(III) iodide is the inorganic compound with the formula VI3. This paramagnetic solid is generated by the reaction of vanadium powder with iodine at around 500 °C. The black hygroscopic crystals dissolve in water to give green solutions, characteristic of V(III) ions.

<span class="mw-page-title-main">Chromium(III) iodide</span> Chemical compound

Chromium(III) iodide, also known as chromium triiodide, is an inorganic compound with the formula CrI3. It is a black solid that is used to prepare other chromium iodides.

Cerium(III) iodide (CeI3) is the compound formed by cerium(III) cations and iodide anions.

<span class="mw-page-title-main">Europium(II) iodide</span> Chemical compound

Europium(II) iodide is the iodide salt of divalent europium cation.

Iron(III) iodide is an inorganic compound with the chemical formula FeI3. It is a thermodynamically unstable compound that is difficult to prepare. Nevertheless, iron(III) iodide has been synthesised in small quantities in the absence of air and water.

Neodymium(III) iodide is an inorganic salt of iodine and neodymium with the formula NdI3. Neodymium uses the +3 oxidation state in the compound. The anhydrous compound is a green powdery solid at room temperature.

<span class="mw-page-title-main">Neodymium(II) iodide</span> Chemical compound

Neodymium(II) iodide or neodymium diiodide is an inorganic salt of iodine and neodymium the formula NdI2. Neodymium uses the +2 oxidation state in the compound.

<span class="mw-page-title-main">Praseodymium(III) iodide</span> Chemical compound

Praseodymium(III) iodide is an inorganic salt, consisting of the rare-earth metal praseodymium and iodine, with the chemical formula PrI3. It forms green crystals. It is soluble in water.

<span class="mw-page-title-main">Europium compounds</span> Compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

<span class="mw-page-title-main">Lanthanum(III) iodide</span> Chemical compound

Lanthanum(III) iodide is an inorganic compound containing lanthanum and iodine with the chemical formula LaI
3
.

<span class="mw-page-title-main">Gadolinium(III) iodide</span> Chemical compound

Gadolinium(III) iodide is an iodide of gadolinium, with the chemical formula of GdI3. It is a yellow, highly hygroscopic solid with a bismuth(III) iodide-type crystal structure. In air, it quickly absorbs moisture and forms hydrates. The corresponding oxide iodide is also readily formed at elevated temperature.

Lutetium compounds are compounds formed by the lanthanide metal lutetium (Lu). In these compounds, lutetium generally exhibits the +3 oxidation state, such as LuCl3, Lu2O3 and Lu2(SO4)3. Aqueous solutions of most lutetium salts are colorless and form white crystalline solids upon drying, with the common exception of the iodide. The soluble salts, such as nitrate, sulfate and acetate form hydrates upon crystallization. The oxide, hydroxide, fluoride, carbonate, phosphate and oxalate are insoluble in water.

Ruthenium(III) iodide is a chemical compound containing ruthenium and iodine with the formula RuI3. It is a black solid.

<span class="mw-page-title-main">Ytterbium(III) iodide</span> Chemical compound

Ytterbium(III) iodide is one of ytterbium's iodides, with the chemical formula of YbI3.

References

  1. 1 2 3 4 5 6 7 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1240–1241. ISBN   978-0-08-037941-8.
  2. William M. Haynes, ed. (2014). CRC Handbook of Chemistry and Physics (95th ed.). CRC Press. p. 4-63. ISBN   978-1482208689.
  3. 1 2 Wells, A. F. (1984). Structural Inorganic Chemistry (5th ed.). Oxford University Press. p. 421. ISBN   978-0-19-965763-6.
  4. 1 2 Asprey, L. B.; Keenan, T. K.; Kruse, F. H. (1964). "Preparation and Crystal Data for Lanthanide and Actinide Triiodides". Inorg. Chem. 3 (8): 1137–1141. doi:10.1021/ic50018a015.
  5. Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN   0-12-352651-5.
  6. Emel'yanov, V. I.; Kuznetsova, L. I.; Abramova, L. V.; Ezhov, A. I. (1997). "Systems Eu2O3-HI-H2O and EuI3-HI-H2O at 25°C". Zh. Neorg. Khim. 42 (8): 1394–1396.
  7. Ortu, Fabrizio (2022). "Rare Earth Starting Materials and Methodologies for Synthetic Chemistry". Chem. Rev. 122: 6040–6116. doi: 10.1021/acs.chemrev.1c00842 . PMC   9007467 .
  8. Gompa, Thaige P.; Rice, Natalie T.; Russo, Dominic R.; Aguirre Quintana, Luis M.; Yik, Brandon J.; Basca, John; La Pierre, Henry S. (2019). "Diethyl ether adducts of trivalent lanthanide iodides". Dalton Trans. 48: 8030–8033. doi:10.1039/C9DT00775J.
  9. Brauer, Georg (1975). Handbook of Preparative Inorganic Chemistry. ISBN   3-432-02328-6.
  10. Jenden, Charles M.; Lyle, Samuel J. (1982). "A Mössbauer spectroscopic study of the lodides of europium". J. Chem. Soc., Dalton Trans. (12): 2409–2414. doi:10.1039/DT9820002409.