Carbide iodide

Last updated

Carbide iodides are mixed anion compounds containing iodide and carbide anions. Many carbide iodides are cluster compounds, containing one, two or more carbon atoms in a core, surrounded by a layer of metal atoms, and encased in a shell of iodide ions. These ions may be shared between clusters to form chains, double chains or layers.

The metal in carbide iodides is most often a rare earth element. Similar formulas tend to have similar structures. Where R is a rare earth element: R12C6I17 contains chains of R6 octahedra with a C26− core and a shell of iodide. R4I5C contains similar chains, but with a single C4 carbide atom. Double chain structures with single carbon atom cores include R6I7C2 and R3I3C. Layers of joined octahedra include R2I2C2 with an ethanide C24− core; R2I2C and R2IC with one carbide per octahedron. [1]

Related compounds include carbide chlorides, and carbide bromides. Carbon may be substituted by hydrogen, boron or nitrogen in the core of cluster compounds.

This list does not include cyanides, carbonyls, cyanamides or carbido borates, where carbon has bonds to other non-metals. However, there are carbide iodides that also contain nitride, oxide or other halides.

List

Do not confuse Cl for chlorine, and CI for carbon and iodine.

formulasystemspace groupunit cellvolumedensitycommentreference
Sc2I3CtriclinicP1a=10.793, b=10.803, c=13.959, α=87.8, β=73.04, γ=60.84,76black [2]
Sc4C2I6triclinicP1a=10.803 b=13.959 c=10.793 α=106.96° β=119.20° γ=87.80° Z=4linear chains [3]
Sc6C2I11triclinicP1a=10.046 b=14.152 c=9.030 α=104.36° β=110.45° γ=89.27° Z=24.83black [3]
Sc7CI12trigonalR3a=14.717 c=9.847 Z=34.99dark purple; dissolves in N,N-dimethylacetamide [4] [5]
Sc24C10I30trigonalPa3a=25.5182, c=25.51824.00black; supertetrahedron of C10 [6]
Y2C2I2monoclinicC12/m1a=7174, b=3.866, c=10.412 β=92.98,5.25bronze; superconductor Tc=9.97K [2] [7]
Y2I2CtrigonalP3m1a=3.922 c=10.4045.32olive green [2]
Y4I5CmonoclincC2/ma=18.479 b=3.947 c=8.472 β=103.22°5.53dark red; chains [8]
Y5C2I9monoclinicC12/c1a=18.479, b=3947, c=8472, β=103.22°4.97black [2]
Y6C2I7monoclincC2/ma=21.557 b=3.909 c=12.374 β=123.55°5.53black; twin chain [8] [9]
Y10C2I13monoclincC2/ma=21.317 b=3.95 c=19.889 β=97.40° Z=2black [9]
Y19C6I34triclinicP1a=9.3683,b=10.341, c=22.173, α=79.104, β=88.175, γ=69.277 Z=11970.85.12black [2]
Y10C2I13monoclinicC12/m1a=21.317, b=3.957, c19.899, β=97.4°5.11black [2]
Y19C6I34triclinicP1a=93683, b=10.341, c=22.173, α=79.104°, β=88.175°, γ=69.277°5.12black [2]
Y16B4C8I19triclinicP1a=12.311, b=13.996, c=19.695, α=74.96, β=89.51, γ=67.034.40blue [10]
Y21B7C14I18triclinicP1a=10.66, b=15.546, c=18.416, α=82.49, β=85.01, γ=82.92 Z=229954.87 [10] [11]
Y6C2I9NhexagonalP6a=20.275, c=13.0254.91brown [12]
Y7C2I12NtriclinicP1a=9.7124, b=10.3038, c=16.7358, α=101.366, β=92.758, γ=112.7994.84olive green [12]
Y7C3I6OorthorhombicPmmaa=22.494, b=3.837, c=10.7915.12bronze [12]
[Y9C4O]I8orthorhombicPmmna = 29.127, b = 3.8417, c = 10.80.29, Z = 25.16black [13] [14]
Y16C7I14O2monoclinicC2/ma=51.6, b=3.84, c=10.8, β=935.15 [12]
YCI0.75l0.25CmonoclinicC2/ma=7.127, b=3.839, c=10.441, β=93.844.78 [15]
YI0.75CBr0.25monoclinicC2/ma=7.131, b=3.847, c=10.358, β=93.735.06 [16]
Zr6CI12trigonalR3a=14.508, c=10.0075.69 [2]
Zr6CI14orthorhombicCmcea=15.69, b=14.218, c=12.8085.43 [2]
K0.58Zr6CI14orthorhombicCmcaa=15.727, b=14.278, c=127985.54 [12]
RbZr6I14CorthorhombicCmcaa=15.768, b=14.296, c=12.8495.55 [12]
CsY10C4I18triclinicP1a=11.138, b=11.201, c=11.325, α=66.92, β=87.26, γ=60.87 Z=11117.24.99black [17]
Cs2Zr7I18CtrigonalR3ca=10.744, c=29.4095.42 [18]
CsZr6I14CorthorhombicCmcaa=15.803, b=14.305, c=12.9345.61 [18]
Cs2Zr7I18CtrigonalR3a = 10.744, c = 29.409 Z=34.99black [19]
LaICmonoclinicC12/m1a=7.619, b=4.1252, c=10.7513, β=93.1435.47bronze [20]
LaICmonoclinicC12/m1a=7.6132, b=4.1324, c=10.859, β=100.8355.50bronze [20]
La3I5CtriclinicP1a=7.955, b=9.687, c=9.728, α=107.81, β=97.34, γ=105.565.28violet [2]
La3C2I3orthorhombicC2221a=12.026 b=17.739 c=17.7355.77black [2]
La4C1.5I5monoclinicC2/ma = 19.849, b = 4.1410, c = 8.956, β = 103.86°5.62metallic grey [21]
La4C2I5orthorhombicImmma = 19.907, b = 4.1482, c = 8.963, β = 104.36° [21]
La5C2I9orthorhombicPbcaa = 8.025, b = 16.887, c = 35.886 Z=848635.08>850° metallic green [22]
La5C2I9triclinicP1a = 8.006, b = 10.088, c = 14.383, α = 79.34°, β = 80.75° and γ = 85.07° Z=21124.95.494<800 °C; dark red; air sensitive [22] [23]
La6I10(C2)triclinicP1a = 9.687, b = 9.728, c = 7.955, α = 97.34°, β = 105.56° and γ = 107.81° Z=1699.335.276violet; air sensitive [23]
La7C3I10triclinicP1a=9.761, b=11.79, c=14.055, α=79.6, β=71.49, γ=65.795.42greenish black [2]
La10C4I15triclinicP1a=9.747, b=10.655, c=11.736, α=93.68, β=114.44, γ=109.285.45dark red [20]
La10I15(C2)2triclinicP1a = 9.747, b = 10.655, c = 11.736, α = 93.68°, β = 114.44° and γ = 109.28° Z=11018.395.447dark red; air sensitive [23]
La12I17(C2)3monoclinicC12/c1a= 19.927, b= 12.636, c = 19.399, β = 90.24(1)°, Ζ = 44884.65.30black [24]
La14(C2)3I20triclinicP1a = 9.761, b = 11.790, c = 14.055, α = 79.60°, β = 71.49°, γ = 65.79°greenish black [25]
La4B2I5Cmonoclinica=23.303, b=4.299, c=18.991, β=126.225.30black [26]
La9B3C6I5orthorhombica=3.9481, b=33.857, c=8.2186.01 [10]
La4I6CNtetragonala=13.953 c=9.8114.67olive green [27]
LaCI0.75l0.25CmonoclinicC2/ma=7.5764, b=4.0758, c=10.7266, β=93.3845.12bronze [15]
LaI0.75CBr0.25monoclinicC2/ma=75857, b=4.0981, c=10.6782, β=93.2725.33bronze [16]
Ce3I5CtriclinicP1a=7.875, b=9.588, c=9.648, α=107.69, β=97.24, γ=105.325.43violet [28]
Ce5C2I9orthorhombicPbcaa = 7.9284, b = 16.714, c = 35.5305.27red [22]
Ce6I10C2triclinicP1a=9.588 b=9.648 c=7.875 α = 97.24°, β = 105.32° and γ = 107.69 Z=1652.35.432violet [23]
Ce7C3I10triclinicP1a=9.688, b=11.67, c=13.932, α=80.16, β=71.81, γ=65.885.57greenish black [28]
Ce12C6I17monoclinicC12/c1a=19.731, b=12.495, c=19.182, β=90.365.49black; chains [28]
Ce14(C2)3I20triclinicP1a = 9.688, b = 11.670, c = 13.932, α = 80.16°, β = 71.81°, γ = 65.88°greenish back; semiconductor [25]
Ce4B2I5Cmonoclinica=23.194, b=4.29, c=18.822, β=126.55.42black [26]
Ce8I6(C2)(N)2
Ce4I6CNtetragonalP42/mnma = 13.877, c = 9.665 Z=41861.34.810brown [29]
Ce6I9C2NhexagonalP6/ma = 41.774, c = 13.719 Z=32207345.179black; moisture sensitive [29]
Ce6I9C2NhexagonalP6/ma = 20.958, c = 13.793 Z=852465.117black [29]
Pr{Pr6C}I12black [30]
Pr7C3I10triclinicP1a=9663, b=11.619, c=13.866, α=80.31, β=71.79, γ=65.95.64black [2]
Pr12(C2)3I17monoclinicC2/ca=19.610, b=12.406, c=19.062, β=90.45°5.62metallic grey [2] [31]
Nd2C2I2monoclinicC2/mlayered [32]
Nd12(C2)3I17monoclinicC2/ca=19.574, b=112.393, c=19.003(5) Å, β=90.41°5.71black [2] [31]
Rb{Pr6C2}I12triclinicP1a = 9.601, b = 9.570, c = 10.034, α = 71.74, β = 70.69, γ = 72.38°, Z = 1805.65.11black [33]
Cs2[Pr6(C2)]I12triclinicP1a=9.481, b=9.536, c=10.052; α=71.01; β=84,68, γ=89.37°; Z=1515.35.16black [34]
Cs4[Pr6(C2)]I13tetragonalI41/amda = 18.049; c = 12.5954.94blue-black with brassy lustre [35]
Gd2IChexagonalP63/mmca=3.801, c=14.7928.14 [36]
Gd3I3CmonoclinicP121/m1a=8.658, b=3.926, c=11.735, β=92.267.20bronze; twin chains [36]
Gd4I5CmonoclinicC2/ma=18.587 b=3.978 c=8.561 β=103.3chains [37]
Gd6C2I7monoclinicC2/ma=21.767 b=3.947 c=12.459 β=123.6twin chains [37]
Gd7I12CtrigonalR3a=15.288 c=10.291 [37]
Gd10C4I16triclinicP1a=10.463 b=16.945 c=11.220 α=99.16 β=92.68 γ=88.066.18black [38]
Gd12(C2)3I17monoclinicC2/ca = 19.297, b = 12.201, c = 18.635, β = 90.37°6.13black; Gd6 octahedra containing C2 [39]
Gd4I6CNtetragonala=13.578 c=9.3135.48brown red; air sensitive [27]
Gd4I6CNhexagonala=40.806 c=9.2325.65brown red [27]
Gd19(C2)3I34triclinicP1a = 9.4172, b = 10.339, c = 22.371, α = 79.00°, β = 88.32°, γ = 69.25° Z=12007.66.10black; air sensitive [40]
[Gd4(C2)](Cl, I)6tetragonalP4/mbma = 13.475, c = 12.125, Z = 2black [41]
Gd6C3I4.56Cl4.44tetragonalP4/mbma=13.475, c=12.1255.18black [15]
Tb2IChexagonalP63/mmca=3.7707, c=14.668.40 [2]
Tb2C2I2monoclinicC2/mlayered [42]
Dy2I3CorthorhombicPnnma=13.622, b=14.335, c=8.3965.82 [43]
Dy5C2I9monoclinicP121/c1a=10.47, b=17.152, c=13.983, β=121.146.12black [43]
Dy7C2I12trigonalR3a=15.233, c=10.6496.25black [43]
Dy12(C2)3I17monoclinicC2/ca=19.149, b=12.069, c=18.595, β=90.546.46black [43] [31]
{(C2)2O2Dy12}I18hexagonalP6/ma = 20.2418, c = 12.9921, Z = 84610.16.22black [44]
{(C2)2O2Dy14}I24triclinicP1a = 9.730, b = 10.330, c = 16.770, α = 101.42°, β = 92.72°, γ = 112.75°, Z = 21509.35.94black [44]
Ho7C2I12NtriclinicP1a=9.688, b=10.287, c=16.678, α=101.31, β=92.78, γ=112.86.06brown red [45]
[Ho9C4O]I8orthorhombicPmmna=3.8157, b=28.867, c=10.7487.19 [45] [14]
Er4I5CmonoclinicC2ma=18.521 b=4.015 c=8.478 β=103.07 [37]
Er6C2I7monoclinicC2/ma=21.375 b=3.869 c=12.319 β=123.50twin chains [37]
[Er9C4O]I8orthorhombicPmmna=3.8037, b=28.818, c=10.73817.29 [46] [14]
Cs[Er6C]I12trigonalR3a=11.120 c=20.638 Z=3443.716.02black [47]
[Er14(C2)2(N)2]l24triclinicP1a = 9.663, b = 10.276, c = 16.634, α =101.374°, β = 92.85°, γ = 112.83°, Z =21477.86.14red brown [48]
CsEr10(C2)2I18triclinicP1a=11.052 b=11.120 c=11.229 α=66.01° β=87.14° γ=60.80° Z=1656.66.29black [47]
[Lu9C4O]I8orthorhombicPmmna=3.7575, b=28.333, c=10.63777.78 [12] [14]

Related Research Articles

<span class="mw-page-title-main">Indium(III) bromide</span> Chemical compound

Indium(III) bromide, (indium tribromide), InBr3, is a chemical compound of indium and bromine. It is a Lewis acid and has been used in organic synthesis.

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

The nitridoborates are chemical compounds of boron and nitrogen with metals. These compounds are typically produced at high temperature by reacting hexagonal boron nitride with metal nitrides or by metathesis reactions involving nitridoborates. A wide range of these compounds have been made involving lithium, alkaline earth metals and lanthanides, and their structures determined using crystallographic techniques such as X-ray crystallography. Structurally one of their interesting features is the presence of polyatomic anions of boron and nitrogen where the geometry and the B–N bond length have been interpreted in terms of π-bonding.

<span class="mw-page-title-main">Niobium pentaiodide</span> Chemical compound

Niobium pentaiodide is the inorganic compound with the formula Nb2I10. Its name comes from the compound's empirical formula, NbI5. It is a diamagnetic, yellow solid that hydrolyses readily. The compound adopts an edge-shared bioctahedral structure, which means that two NbI5 units are joined by a pair of iodide bridges. There is no bond between the Nb centres. Niobium(V) chloride, niobium(V) bromide, tantalum(V) chloride, tantalum(V) bromide, and tantalum(V) iodide, all share this structural motif.

The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I). They are in the class of mixed anion compounds or chalcogenide halides.

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Phosphide iodides or iodide phosphides are compounds containing anions composed of iodide (I) and phosphide (P3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, arsenide iodides antimonide iodides and phosphide bromides.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

Arsenide iodides or iodide arsenides are compounds containing anions composed of iodide (I) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide bromides, phosphide iodides, and antimonide iodides.

An iodide nitride is a mixed anion compound containing both iodide (I) and nitride ions (N3−). Another name is metalloiodonitrides. They are a subclass of halide nitrides or pnictide halides. Some different kinds include ionic alkali or alkaline earth salts, small clusters where metal atoms surround a nitrogen atom, layered group 4 element 2-dimensional structures, and transition metal nitrido complexes counter-balanced with iodide ions. There is also a family with rare earth elements and nitrogen and sulfur in a cluster.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

Carbide bromides are mixed anion compounds containing bromide and carbide anions. Many carbide bromides are cluster compounds, containing on, two or more carbon atoms in a core, surrounded by a layer of metal atoms, encased in a shell of bromide ions. These ions may be shared between clusters to form chains, double chains or layers.

Iodide hydrides are mixed anion compounds containing hydride and iodide anions. Many iodide hydrides are cluster compounds, containing a hydrogen atom in a core, surrounded by a layer of metal atoms, encased in a shell of iodide.

<span class="mw-page-title-main">Praseodymium(III) iodide</span> Chemical compound

Praseodymium(III) iodide is an inorganic salt, consisting of the rare-earth metal praseodymium and iodine, with the chemical formula PrI3. It forms green crystals. It is soluble in water.

Germanide halides are compound that include the germanide (Ge4−) anion and a halide such as chloride (Cl), bromide (Br) or iodide (I). They include germanide iodides, germanide bromides or germanide chlorides. They can be considered as mixed anion compounds. They are in the category of tetrelidehalides. Related compounds include the silicide iodides, and carbide iodides.

Antimonide iodides or iodide antimonides are compounds containing anions composed of iodide (I) and antimonide (Sb3−). They can be considered as mixed anion compounds. They are in the category of pnictide halides. Related compounds include the antimonide chlorides, antimonide bromides, phosphide iodides, and arsenide iodides.

<span class="mw-page-title-main">Gadolinium(III) iodide</span> Chemical compound

Gadolinium(III) iodide is an iodide of gadolinium, with the chemical formula of GdI3. It is a yellow, highly hygroscopic solid with a bismuth(III) iodide-type crystal structure. In air, it quickly absorbs moisture and forms hydrates. The corresponding oxide iodide is also readily formed at elevated temperature.

<span class="mw-page-title-main">Gadolinium diiodide</span> Chemical compound

Gadolinium diiodide is an inorganic compound, with the chemical formula of GdI2. It is an electride, with the ionic formula of Gd3+(I)2e, and therefore not a true gadolinium(II) compound. It is ferromagnetic at 276 K with a saturation magnetization of 7.3 B; it exhibits a large negative magnetoresistance (~70%) at 7 T near room temperature. It can be obtained by reacting gadolinium and gadolinium(III) iodide at a high temperature:

Samarium(III) oxyiodide is an inorganic compound with the chemical formula SmOI. It can be obtained by reacting samarium(II) iodide with dry oxygen. It is oxidized when heated to 335 °C in air, and starts to generate nSmOI·Sm2O3 (n is 7, 4, 2 respectively) at 460 °C, 560 °C, and 640 °C, and completely transforms at 885 °C for samarium oxide. It can catalyze the rearrangement of propylene oxide derivatives to methyl ketones. It reacts with samarium(III) iodide, sodium iodide, and sodium at 903 K in a tantalum container to obtain black Sm4OI6.

<span class="mw-page-title-main">Calcium arsenide</span> Chemical compound

Calcium arsenide is an inorganic compound with the chemical formula Ca2As2 and is one of the arsenides of calcium. It is a hexagonal crystal with a space group of P62m. It is isostructural with sodium peroxide and can be expressed as (Ca2+)2(As-As)4−. It reacts with sodium monoarsenide and silicon in a tantalum container to obtain Na4Ca2SiAs4. It reacts with potassium arsenide, iron arsenide and calcium fluoride at high temperature to obtain KCa2Fe4As4F2.

References

  1. Simon, Arndt (December 1987). "Borderline of cluster chemistry with lanthanides". Inorganica Chimica Acta. 140: 57–58. doi:10.1016/s0020-1693(00)81050-6.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 363. ISBN   978-3-11-031174-7.
  3. 1 2 Dudis, Douglas S.; Corbett, John D. (June 1987). "Two scandium iodide carbides containing dicarbon units within scandium clusters: Sc6I11C2 and Sc4I6C2. Synthesis, structure, and the bonding of dicarbon". Inorganic Chemistry. 26 (12): 1933–1940. doi:10.1021/ic00259a025. ISSN   0020-1669.
  4. Dudis, Douglas S.; Corbett, John D.; Hwu, Shiou Jyh (September 1986). "Synthesis, characterization, and crystal structures of two scandium cluster carbides and a boride, Sc7X12C (X = I, Br) and Sc7I12B". Inorganic Chemistry. 25 (19): 3434–3438. doi:10.1021/ic00239a023. ISSN   0020-1669.
  5. Demir, Selvan; Tyrra, Wieland; Schmitz, Simon; Klein, Axel; Meyer, Gerd H. (2022). "Pursuing the excision of carbon-centred hexanuclear scandium clusters {CSc6} from solid {CSc6}I12Sc†". Australian Journal of Chemistry. 75 (9): 523–531. doi:10.1071/CH21267. ISSN   0004-9425. S2CID   247090688.
  6. Jongen, Liesbet; Mudring, Anja-Verena; Meyer, Gerd (2006-03-13). "The Molecular Solid Sc24C10I30: A Truncated, Hollow T4 Supertetrahedron of Iodine Filled with a T3 Supertetrahedron of Scandium That Encapsulates the Adamantoid Cluster Sc4C10". Angewandte Chemie International Edition. 45 (12): 1886–1889. doi:10.1002/anie.200503914. ISSN   1433-7851. PMID   16485307.
  7. Henn, R. W.; Schnelle, W.; Kremer, R. K.; Simon, A. (1996-07-08). "Bulk Superconductivity at 10 K in the Layered Compounds Y 2 C 2 I 2 and Y 2 C 2 Br 2". Physical Review Letters. 77 (2): 374–377. doi:10.1103/PhysRevLett.77.374. ISSN   0031-9007. PMID   10062435.
  8. 1 2 Kauzlarich, Susan M.; Hughbanks, Timothy; Corbett, John D.; Klavins, Peter; Shelton, Robert N. (May 1988). "Two extended metal chain compounds, yttrium iodide carbides (Y4I5C and Y6I7C2). Synthesis, structure, properties, and bonding". Inorganic Chemistry. 27 (10): 1791–1797. doi:10.1021/ic00283a024. ISSN   0020-1669.
  9. 1 2 Kauzlarich, Susan M.; Payne, Martin W.; Corbett, John D. (September 1990). "Y10I13C2: a novel compound with chains of both carbon-centered and empty clusters". Inorganic Chemistry. 29 (19): 3777–3781. doi:10.1021/ic00344a025. ISSN   0020-1669.
  10. 1 2 3 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 844. ISBN   978-3-11-031174-7.
  11. Oeckler, Oliver; Duppel, Viola; Mattausch, Hansjürgen; Simon, Arndt (1999-04-01). "Y 21 I 18 C 14 B 7 : Synthesis, Average Structure, and Structural Misfit". Inorganic Chemistry. 38 (8): 1767–1771. doi:10.1021/ic981377x. ISSN   0020-1669. PMID   11670945.
  12. 1 2 3 4 5 6 7 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 948. ISBN   978-3-11-031174-7.
  13. Meyer, H.-Jürgen (August 1993). "Zur elektronischen Struktur von [Y9C4O]I8". Zeitschrift für anorganische und allgemeine Chemie (in German). 619 (8): 1389–1392. doi:10.1002/zaac.19936190812. ISSN   0044-2313.
  14. 1 2 3 4 Mattfeld, Heiner; Krämer, Karl; Meyer, Gerd (August 1993). "[M9C4O]I8 (M = Y, Ho, Er, Lu), reduzierte Selten-Erd-Iodide mit gewellten Metall-Doppelschichten und zwei verschiedenen interstitiellen Atomen". Zeitschrift für anorganische und allgemeine Chemie (in German). 619 (8): 1384–1388. doi:10.1002/zaac.19936190811. ISSN   0044-2313.
  15. 1 2 3 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 934. ISBN   978-3-11-031174-7.
  16. 1 2 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 924. ISBN   978-3-11-031174-7.
  17. Hinz, D. J.; Meyer, G. (1995-12-01). Hinz, D. J.; Meyer, G. (eds.). "Crystal structure of caesium yttrium carbide iodide (1-10-4-18), Cs[Y 10 (C 2 ) 2 ]I 18". Zeitschrift für Kristallographie - Crystalline Materials. 210 (12): 958. Bibcode:1995ZK....210..958H. doi:10.1524/zkri.1995.210.12.958. ISSN   2194-4946.
  18. 1 2 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 937. ISBN   978-3-11-031174-7.
  19. Payne, Martin W.; Corbett, John D. (February 1993). "The Synthesis and Structure of a New Zirconium Iodide Carbide Cluster Phase, Cs2Zr7I18C". Journal of Solid State Chemistry. 102 (2): 553–556. doi:10.1006/jssc.1993.1066.
  20. 1 2 3 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 362. ISBN   978-3-11-031174-7.
  21. 1 2 Mattausch, Hansjürgen; Schaloske, Manuel C.; Hoch, Constantin; Zheng, Chong; Simon, Arndt (March 2008). "Seltenerdhalogenide Ln4X5Z. Teil 1: C und/oder C2 in Ln4X5Z". Zeitschrift für anorganische und allgemeine Chemie (in German). 634 (3): 491–497. doi: 10.1002/zaac.200700500 .
  22. 1 2 3 Mattausch, Hansjürgen; Hoch, Constantin; Simon, Arndt (April 2008). "Das Lanthaniodidethanido-La5I9(C2) – Die orthorhombische Hochtemperaturmodifikation". Zeitschrift für anorganische und allgemeine Chemie (in German). 634 (4): 641–645. doi:10.1002/zaac.200700477.
  23. 1 2 3 4 Mattausch, Hansjürgen; Hoch, Constantin; Simon, Arndt (June 2005). "Drei neue Ethanidiodide des Lanthans: La5I9(C2), La6I10(C2) und La10I15(C2)2". Zeitschrift für anorganische und allgemeine Chemie (in German). 631 (8): 1423–1429. doi:10.1002/zaac.200500022. ISSN   0044-2313.
  24. Mattausch, Hj.; Simon, A. (April 2005). "Crystal structure of dodecalanthanum heptadecaiodide triethanide, La12I17(C2)3". Zeitschrift für Kristallographie - New Crystal Structures. 220 (1–4): 319–320. doi: 10.1524/ncrs.2005.220.14.319 . ISSN   2197-4578. S2CID   201120291.
  25. 1 2 Mattausch, Hansjürgen; Simon, Arndt; Kienle, Lorenz; Hoch, Constantin; Zheng, Chong; Kremer, Reinhard K. (August 2006). "EYPHKAMEN: Ln-Oktaedertripel in Ln14(C2)3I20 mit Ln = La, Ce". Zeitschrift für anorganische und allgemeine Chemie (in German). 632 (10–11): 1661–1670. doi:10.1002/zaac.200500493. ISSN   0044-2313.
  26. 1 2 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 843. ISBN   978-3-11-031174-7.
  27. 1 2 3 Mattausch, Hansjürgen; Borrmann, Horst; Eger, Roland; Kremer, R. K.; Simon, Arndt (November 1994). "Gd4I6CN: Ein Carbidnitrid mit Ketten aus Gd6(C2)-Oktaedern und Gd6N2-Tetraederdoppeln". Zeitschrift für anorganische und allgemeine Chemie (in German). 620 (11): 1889–1897. doi:10.1002/zaac.19946201109. ISSN   0044-2313.
  28. 1 2 3 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 352. ISBN   978-3-11-031174-7.
  29. 1 2 3 Schaloske, Manuel C.; Kienle, Lorenz; Mattausch, Hansjürgen; Duppel, Viola; Simon, Arndt (September 2011). "Disorder in Rare Earth Metal Halide Carbide Nitrides". European Journal of Inorganic Chemistry. 2011 (26): 4049–4056. doi:10.1002/ejic.201100201. ISSN   1434-1948.
  30. Meyer, Gerd (February 2008). "Reduced rare-earth iodides without and with carbon". Journal of Alloys and Compounds. 451 (1–2): 666–668. doi:10.1016/j.jallcom.2007.04.083.
  31. 1 2 3 Ryazanov, Mikhail; Mattausch, Hansjürgen; Simon, Arndt (April 2007). "The extended chain compounds Ln12(C2)3I17 (Ln=Pr, Nd, Gd, Dy): Synthesis, structure and physical properties". Journal of Solid State Chemistry. 180 (4): 1372–1380. doi:10.1016/j.jssc.2007.01.029.
  32. Ahn, K.; Gibson, B.J.; Kremer, R.K.; Simon, A. (2002-12-01). "Magnetic ordering within the layered neodymium carbide iodides, Nd 2 C 2 I 2". Applied Physics A: Materials Science & Processing. 74: s920–s922. doi:10.1007/s003390101164. ISSN   0947-8396. S2CID   96028929.
  33. Wiglusz, Rafał; Pantenburg, Ingo; Meyer, Gerd (August 2007). "Rb{Pr 6 C 2 }I 12 , an Iodide with a 13-Electron Isolated Octahedral {Pr 6 C 2 } Cluster". Zeitschrift für anorganische und allgemeine Chemie. 633 (9): 1317–1319. doi:10.1002/zaac.200700081. ISSN   0044-2313.
  34. Artelt, Holger M.; Meyer, Gerd (January 1993). "Cs2[Pr6(C2)]I12 - das erste quaternäre reduzierte Halogenid mit isolierten [M6(C2)]-Clustern". Zeitschrift für anorganische und allgemeine Chemie (in German). 619 (1): 1–6. doi:10.1002/zaac.19936190103. ISSN   0044-2313.
  35. Artelt, Holger M.; Schleid, Thomas; Meyer, Gerd (September 1994). "Cs4[Sc6C]Cl13 und Cs4[Pr6(C2)]I13 ? zwei Beispiele für das fehlende Bindeglied bei der Verknüpfung der Baueinheiten [M6Z]X12iX6a". Zeitschrift für anorganische und allgemeine Chemie (in German). 620 (9): 1521–1526. doi:10.1002/zaac.19946200905. ISSN   0044-2313.
  36. 1 2 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 360. ISBN   978-3-11-031174-7.
  37. 1 2 3 4 5 Handbook on the Physics and Chemistry of Rare Earths volume 15. Elsevier. 1991. p. 195. ISBN   9780444889669.
  38. Simon, Arndt (March 1985). "Empty, filled, and condensed metal clusters". Journal of Solid State Chemistry. 57 (1): 2–16. Bibcode:1985JSSCh..57....2S. doi:10.1016/S0022-4596(85)80055-4.
  39. Simon, A.; Warkentin, E. (February 1983). "Gd 12 C 6 I 17 - eine Verbindung mit kondensierten, C 2 -gefüllten Gd 6 I 12 -Clustern". Zeitschrift für anorganische und allgemeine Chemie. 497 (2): 79–92. doi:10.1002/zaac.19834970208.
  40. Schaloske, Manuel C.; Kienle, Lorenz; Duppel, Viola; Mattausch, Hansjürgen; Simon, Arndt (January 2010). "SE 19 (C 2 ) 3 I 34 ( SE = Y, Gd): Verbindungen mit diskreten SE 6 I 12 -Clustern und isolierten SE -Atomen". Zeitschrift für anorganische und allgemeine Chemie. 636 (1): 188–195. doi: 10.1002/zaac.200900483 .
  41. Ließ, Henning; Meyer, H.-Jürgen; Meyer, Gerd (March 1996). "[Gd4(C2)](Cl, I)6, an Interstitially Stabilized Heteroleptic Gadolinium Sesquihalide". Zeitschrift für anorganische und allgemeine Chemie (in German). 622 (3): 494–500. doi:10.1002/zaac.19966220318. ISSN   0044-2313.
  42. Ahn, K; Gibson, B.J; Kremer, R.K; Mattausch, Hj; Keller, L; Simon, A (July 2001). "Magnetic ordering within the layered terbium carbide iodide, Tb2C2I2". Journal of Alloys and Compounds. 323–324: 400–403. doi:10.1016/S0925-8388(01)01096-9.
  43. 1 2 3 4 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 357. ISBN   978-3-11-031174-7.
  44. 1 2 Daub, Kathrin; Meyer, Gerd (September 2010). "Isolated and Edge-Connected Tetramers {(C2)2O2Dy14} in the Crystal Structures of {(C2)2O2Dy14}I24 and {(C2)2O2Dy12}I18". Zeitschrift für anorganische und allgemeine Chemie. 636 (9–10): 1716–1719. doi:10.1002/zaac.201000128. S2CID   93581620.
  45. 1 2 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 947. ISBN   978-3-11-031174-7.
  46. Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 938. ISBN   978-3-11-031174-7.
  47. 1 2 Artelt, Holger M.; Meyer, Gerd (1992). "Synthesis and crystal structures of two new reduced iodides of erbium with isolated monomeric and dimeric clusters, Cs[Er6C]I12 and Cs[Er10(C2)2]I18". Journal of the Chemical Society, Chemical Communications (18): 1320–1321. doi:10.1039/c39920001320. ISSN   0022-4936.
  48. Steffen, Frank; Meyer, Gerd (1995-10-01). "[Er 14 (C 2 ) 2 (N) 2 ]l 24 – ein Iodid mit einem oligomeren, heterointerstitiellen Cluster / [Er 14 (C 2 ) 2 (N) 2 ]l 24 – an Iodide with an Oligomeric, Heterointerstitial Cluster". Zeitschrift für Naturforschung B. 50 (10): 1570–1574. doi: 10.1515/znb-1995-1024 . ISSN   1865-7117. S2CID   95276145.