Carbide chloride

Last updated

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbon chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

The carbide chlorides are a subset of the halide carbides, with related compounds including the carbide bromides, and carbide iodides. Cluster compounds similar to these carbides, may instead replace carbon with boron, hydrogen, nitrogen or phosphorus.

List

formulasystemspace groupunit cellvolumedensitycommentreference
Ca3C3Cl2orthorhombicCmcma=3.876, b=13.524, c=11.6532.47red [1]
Sc2CCl2P3m1a=3.39977 c=8.8583.24black [2]
Sc5CCl8monoclinicC12/m1a=17.8 b=3.5259 c=12.052 β=130.112.99 [2]
Sc7C2Cl10monoclinicC12/m1a=18.62 b=11.81 β=99.813.04ruby red; moisture sensitive [3] [2]
Ti6CCl14orthorhombicCmcea=12.4592 b=12.2458 c=10.95762.93black [2]
YCClC12/m1a=6.82 b=3.713 c=9.327 β=94.753.85 [2]
Y2C0.7Cl2P3m1a=3.7022 c=9.1953.91silvery grey [2]
Zr6CCl14orthorhombicCmcea=14.091 b=12.595 c=11.5063.43brown red [4] [2]
KZr6CCl15orthorhombicPnmaa=18.489 b=13.909 c=9.690 Z=42492dark red; Zr6C clusters [5]
Rb4Zr6CCl18C2/ma=10.460 b=17.239 c=9.721 β=115.05 Z=2 [6]
Rb[(Zr6C)Cl15]orthorhombicPnmaa=18.484,b= 18.962,c=9.708 Z= 42505.43.12dark red-brown [7]
Cs4[Sc6C]Cl13tetragonalI41/amda = 15.405, c = 10.179 Z=4green black [8]
Cs[(Zr6C)Cl15]orthorhombicPnmaa = 18.513 b = 13.916 c = 9.6383 Z=42483.1dark red [9]
La2CClR3ma=3.878 c=16.915.74coppery red [10]
La2C2ClmonoclinicC12/c1a=14.77 b=4.187 c=6.802 β=101.55.44gold [11] [10]
La3C3Cl2monoclinicC12/c1a=7.771 b=12.962 c=6.91 β=104.35.16gold [10]
La4C2Cl5orthorhombicImmma=3.92 b=7.945 c=19.2974.67black [10]
La4C5Cl2monoclinicC12/m1a=22.57 b=3.91 c=1.019 β=95.695.07gold [10]
La5C2Cl9triclinicP1a=8.645 b=8.706 c=11.925 α=84.97° β=85.78° γ=61.31°4.40red [10]
La6(C2)3Cl4monoclinicP21/ca = 7.770, b = 12.962, c = 6.910 and β = 104.30° Z=2674.45.158gold; sheets of octahedra [12]
La8C8Cl5monoclinicP121/c1a=7.756 b=16.951 c=6.878 β=104.25.24gold [11] [10]
La8(C2)5Cl4monoclinicC2/ma = 22.570, b = 3.9300, c = 10.190 β = 95.69° Z=2899.45.071gold [12]
La11C11Cl7monoclinicP121/c1a=7.77 b=47.038 c=6.901 β=104.285.19gold [10]
La14C14Cl9monoclinicP1C1a=7.775 b=2.9963 c=6.895 β=104.215.19gold [11] [10]
La20C20Cl13monoclinicP121/c1a=7.762 b=42.941 c=6.903 β=104.265.18black [11] [10]
La36C36Cl23monoclinicP121/c1a=7.764 b=77.055 c=6.897 β=104.265.18grey [11] [10]
K[La5(C2)]Cl10monoclinicP21/ca=8.5632, b=15.074, 17.115 β=119.74 Z=41918.33.85light red [13]
Ce2C2ClmonoclinicC12/c1a=14.573, b=4.129, c=6.696, β=101.375.71gold [1]
Ce2(C2)2ClmonoclinicC2/ca = 14.573, b = 4.129, c = 6.696, β = 101.37 ° [14]
Ce3CCl5monoclinicC12/c1a=13.899, b=8.71, c=15.765, β=98.224.29orange [1]
Ce4CCl8monoclinicP1C1a=13.538, b=10.487, c=22.845, β=126.314.35black [10] [15]
Ce5C2Cl9triclinicP1a=8.57, b=8.627, c=11.869, α=84.8, β=85.5, γ=61.29red [1]
Ce6Cl10C2monoclinicC12/c1a= 13.899,b= 8.710,c= 15.765,β= 98.22° Z=41888.9 [16]
Ce8C8Cl5monoclinicP121/c1a=7.669, b=16.784, c=6.798, β=104.055.46gold [11] [1]
Ce18(C2)9Cl11triclinicP1a = 6.771, b = 7.657, c = 18.98,α = 88.90 °, β = 80.32 °, γ = 76.09 ° [14]
Ce26(C2)13Cl16monoclinicP21/ca = 7.664, b = 54.25, c = 6.796, β = 103.98 ° [14]
K[Ce5(C2)]Cl10monoclinicP21/ca=8.4739, b=15.017, c=1639 β=119.76 Z=41871.23.97red [13]
Pr3CCl5monoclinicC12/c1a=13.867 b=8.638 c=15.69 β=97.674.37yellow [2]
Pr4C2Cl5orthorhombicImmma=3.848 b=7.759 c=17.015.00black [2]
Pr5C2Cl9triclinicP1a=8.526 b=8.592 c=11.821 α=84.77 β=85.42 γ=61.264.61brown red [2]
Pr6C2Cl10monoclinicC2/ca = 13.687, b = 8.638, c = 15.690, β = 97.67°yellow to green [17]
Pr8C8Cl5monoclinicC121/c1a=7.617 b=16.689 c=6.769 β=103.945.57gold [2]
Pr11C11Cl7monoclinicP121/c1a=7.612 b=6.127 c=6.761 β=103.925.56gold [2]
Pr14C14Cl9monoclinicP1c1a=7.611 b=29.392 c=6.764 β=103.95.56gold [2]
K{Pr5(C2)}Cl10hexagonalP63/ma=8.426 c=14.894 Z=2915.9dark red [18]
Rb{Pr5(C2)}Cl10hexagonalP63/ma=8.4499, c=14.976 Z=29264.19red; trigonal bipyrmamid of Pr containing a C2 unit [19]
Rb[Nd5(C2)]Cl10hexagonala=08.398, c=14.884.33dark red [13]
Gd2C2ClP3ma=3.6902, c=20.308 [10]
Gd2C2Cl2monoclinicP3m1a=3.7633, c=9.45935.69black; contains C24− [4] [10]
Gd3CCl3cubicI4132a=10.7346.34 [10]
Gd4C2Cl3orthorhombicPnmaa=10.596, b=3.684, c=19.6276.58bronze [10] [20]
Gd5C2Cl9monoclinicP121/c1a=9.182, b=16.12, c=12.886, β=119.864.54black [10]
Gd5C6Cl3monoclinicC12/m12.1507,0.37193,1.5331,90,123.346.25bronze [10]
Gd6C3Cl5monoclinicC12/m1a=16.688,b=3.6969,c=12.824, β=128.266.18grey [10]
Gd10C4Cl17triclinicP1a=8.498, b=9.174, c=11.462, α=104.56, β=95.98, γ=111.354.70black; contains C24− [4] [10]
Gd10C4Cl18triclinicP1a = 8.498, b = 9.174, c = 11.462, α = 104.56°, β = 95.98°, γ = 111.35°, Z = 1contains C24− [21] [4]
[Gd4(C2)](Cl, I)6tetragonalP4/mbma = 13.475, c = 12.125, Z = 2black [22]
Rb2[Gd10(C2)2]Cl19orthorhombica=1.2228, b=2.2347, c=1.38964.31black [23]
Cs2[Gd10(C2)2]Cl19orthorhombica=1.2344, b=2.2434, c=1.39244.41black [23]
Cs3[Tb10(C2)2]Cl21monoclinicC2/cZ = 4; a = 23.187; b = 12.458; c = 15.02; β = 98.13°black [24]
Lu2CCl2R3ma=3.6017, c=27.167.07brown [10]
Lu2CCl2P3m1a= 3.5972, c=9.09257.05 [10]
Cs2Lu[Lu6C]Cl18R3a = 9.817, c = 27.232, Z = 3 [25]
Hf6CCl14orthorhombicCmcea=13.938, b=12.498, c=11.3995.28 [10]
W2CCl8orthorhombicPbcaa=11.96 b=12.156 c=10.95762.83black [2]
W6CCl15monoclinicC121/c1a=9.8831 b=11.8945 c=17.867 β =107.8835.47black [2]
W6CCl16orthorhombicPnmaa=16.637 b=12.958 c=9.7975.29black [2]
W6CCl18P62ca=8.923 c=17.5034.82black [2]
W30C2(Cl,Br)68triclinicP1a = 12.003, b = 14.862, c = 15.792, α = 88.75°, β = 68.85°, γ = 71.19° Z=12472.9black [26]
Li[W6CCl18]hexagonalP63/ma = 8.8648, c = 17.490 Z=21188.2black [27] [28]
(Bu4N)[W6CCl18] [29]
(Me4N)2[W6CCl18] [28]
(Bu4N)2[W6CCl18] [29]
(Bu4N)3[W6CCl18] [29]
Na[W6CCl18]hexagonalP63/ma=8.9592 c=17.5226 Z=21188.2 [28]
Ca[W6CCl18]hexagonalP63/ma=8.9384 c=17.6526 Z=21220.4 [28]
Cu[W6CCl18]triclinicP1a=8.89 b=8.929 c=17.669 α=81.85 β=80.78 γ=60.39 Z=21200.75.025black [30]
Cu(C2H6OS)6[W6CCl18]monoclinicC2/ca=17.333 b=16.011 c=18.082 β=94.61 Z=45001.73.035dark brown [30]
Cu(C2H6OS)4[W6CCl18]2triclinicP1a=9.47 b=12.630 c=13.634 α=104.69° β=90.16° γ=92.99° Z=11575.24.095dark violet [30]
Ag[W6CCl18]hexagonalP63/ma=8.874 c=17.58 Z=21199 [28]
Cs[W6CCl18]·CH3OHorthorhombicP212121a = 9.6957, b =  14.046, c = 20.238 Z=44.623black; W in trigonal prism around C [27]

Related Research Articles

<span class="mw-page-title-main">Tellurate</span> Compound containing an oxyanion of tellurium

In chemistry tellurate is a compound containing an oxyanion of tellurium where tellurium has an oxidation number of +6. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central tellurium atom.

In chemistry, an arsenite is a chemical compound containing an arsenic oxyanion where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ortho-arsenite is called trioxidoarsenate(III). Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, phosphite which has the structure HPO2−3 and nitrite, NO−2 which is bent.

<span class="mw-page-title-main">Indium(III) bromide</span> Chemical compound

Indium(III) bromide, (indium tribromide), InBr3, is a chemical compound of indium and bromine. It is a Lewis acid and has been used in organic synthesis.

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

The nitridoborates are chemical compounds of boron and nitrogen with metals. These compounds are typically produced at high temperature by reacting hexagonal boron nitride with metal nitrides or by metathesis reactions involving nitridoborates. A wide range of these compounds have been made involving lithium, alkaline earth metals and lanthanides, and their structures determined using crystallographic techniques such as X-ray crystallography. Structurally one of their interesting features is the presence of polyatomic anions of boron and nitrogen where the geometry and the B–N bond length have been interpreted in terms of π-bonding.

<span class="mw-page-title-main">Werner Urland</span> German chemist (born 1944)

Werner Urland is a German chemist whose name is imprinted in the pioneering implementation of the Angular Overlap Model for the interpretation of optical and magnetic properties of rare-earth coordination compounds. This approach receives a renewed value in the context of the vogue around the lanthanide-based new materials, such as achieving magnets at molecular scale, or designing new phosphor materials.

<span class="mw-page-title-main">Europium dichloride</span> Chemical compound

Europium dichloride is an inorganic compound with a chemical formula EuCl2. When it is irradiated by ultraviolet light, it has bright blue fluorescence.

The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I). They are in the class of mixed anion compounds or chalcogenide halides.

Nitride fluorides containing nitride and fluoride ions with the formula NF4-. They can be electronically equivalent to a pair of oxide ions O24-. Nitride fluorides were discovered in 1996 by Lavalle et al. They heated diammonium technetium hexafluoride to 300 °C to yield TcNF. Another preparation is to heat a fluoride compound with a nitride compound in a solid state reaction. The fluorimido ion is F-N2- and is found in a rhenium compound.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermannates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

A chloride nitride is a mixed anion compound containing both chloride (Cl) and nitride ions (N3−). Another name is metallochloronitrides. They are a subclass of halide nitrides or pnictide halides.

Phosphanides are chemicals containing the [PH2] anion. This is also known as the phosphino anion or phosphido ligand. The IUPAC name can also be dihydridophosphate(1−).

Phosphide iodides or iodide phosphides are compounds containing anions composed of iodide (I) and phosphide (P3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the phosphide chlorides, arsenide iodides antimonide iodides and phosphide bromides.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

Arsenide iodides or iodide arsenides are compounds containing anions composed of iodide (I) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide bromides, phosphide iodides, and antimonide iodides.

Arsenide chlorides or chloride arsenides are compounds containing anions composed of chloride (Cl) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide bromides, arsenide iodides, phosphide chlorides, and antimonide chlorides.

An iodide nitride is a mixed anion compound containing both iodide (I) and nitride ions (N3−). Another name is metalloiodonitrides. They are a subclass of halide nitrides or pnictide halides. Some different kinds include ionic alkali or alkaline earth salts, small clusters where metal atoms surround a nitrogen atom, layered group 4 element 2-dimensional structures, and transition metal nitrido complexes counter-balanced with iodide ions. There is also a family with rare earth elements and nitrogen and sulfur in a cluster.

Carbide bromides are mixed anion compounds containing bromide and carbide anions. Many carbide bromides are cluster compounds, containing on, two or more carbon atoms in a core, surrounded by a layer of metal atoms, encased in a shell of bromide ions. These ions may be shared between clusters to form chains, double chains or layers.

Carbide iodides are mixed anion compounds containing iodide and carbide anions. Many carbide iodides are cluster compounds, containing one, two or more carbon atoms in a core, surrounded by a layer of metal atoms, encased in a shell of iodide ions. These ions may be shared between clusters to form chains, double chains or layers.

<span class="mw-page-title-main">Gadolinium diiodide</span> Chemical compound

Gadolinium diiodide is an inorganic compound, with the chemical formula of GdI2. It is an electride, with the ionic formula of Gd3+(I)2e, and therefore not a true gadolinium(II) compound. It is ferromagnetic at 276 K with a saturation magnetization of 7.3 B; it exhibits a large negative magnetoresistance (~70%) at 7 T near room temperature. It can be obtained by reacting gadolinium and gadolinium(III) iodide at a high temperature:

References

  1. 1 2 3 4 5 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 352. ISBN   978-3-11-031174-7.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 354. ISBN   978-3-11-031174-7.
  3. Hwu, Shiou-Jyh; Corbett, John D.; Poeppelmeier, Kenneth R. (March 1985). "Interstitial atoms in metal-metal bonded arrays: The synthesis and characterization of heptascandium decachlorodicarbide, Sc7Cl10C2, and comparison with the interstitial-free Sc7Cl10". Journal of Solid State Chemistry. 57 (1): 43–58. doi:10.1016/S0022-4596(85)80059-1.
  4. 1 2 3 4 Miller, Gordon J.; Burdett, Jeremy K.; Schwarz, Christine; Simon, Arndt (November 1986). "Molecular interstitials: an analysis of the gadolinium carbide chloride, Gd2C2Cl2". Inorganic Chemistry. 25 (24): 4437–4444. doi:10.1021/ic00244a031. ISSN   0020-1669.
  5. Ziebarth, Robin P.; Corbett, John D. (August 1987). "Cation distributions within a cluster framework. Synthesis and structure of the carbon- and boron-centered zirconium cluster compounds KZr6Cl15C and CsKZr6Cl15B". Journal of the American Chemical Society. 109 (16): 4844–4850. doi:10.1021/ja00250a015. ISSN   0002-7863.
  6. Zhang, Jie; Ziebarth, Robin P.; Corbett, John D. (February 1992). "Two novel phases containing centered, isolated zirconium clusters, Rb4Zr6Cl18C and Li6Zr6Cl18H". Inorganic Chemistry. 31 (4): 614–619. doi:10.1021/ic00030a017. ISSN   0020-1669.
  7. Rohm, Henning W.; Köckerling, Martin (2008-05-01). "Synthesis and Structure of and Cation Distribution in the Zirconium Cluster Rb[(Zr 6 C)Cl 15 ]". Zeitschrift für Naturforschung B. 63 (5): 507–512. doi: 10.1515/znb-2008-0505 . ISSN   1865-7117. S2CID   197327959.
  8. Artelt, Holger M.; Schleid, Thomas; Meyer, Gerd (September 1994). "Cs4[Sc6C]Cl13 und Cs4[Pr6(C2)]I13 ? zwei Beispiele für das fehlende Bindeglied bei der Verknüpfung der Baueinheiten [M6Z]X12iX6a". Zeitschrift für anorganische und allgemeine Chemie (in German). 620 (9): 1521–1526. doi:10.1002/zaac.19946200905. ISSN   0044-2313.
  9. Rohm, Henning W.; Köckerling, Martin (2006-02-15). "Cation distribution in the zirconium chloride cluster phase Cs[(Zr 6 C)Cl 15 ]". Acta Crystallographica Section C Crystal Structure Communications. 62 (2): i19–i20. doi:10.1107/S0108270105043076. ISSN   0108-2701. PMID   16456264.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 353. ISBN   978-3-11-031174-7.
  11. 1 2 3 4 5 6 Mattausch, Hansjürgen; Simon, Arndt; Kienle, Lorenz; Köhler, Jürgen; Hoch, Constantin; Nuss, Jürgen (December 2008). "Gewellt und eben - La 6 (C 2 )-Oktaederschichten in Lanthancarbidchloriden". Zeitschrift für anorganische und allgemeine Chemie. 634 (15): 2765–2776. doi:10.1002/zaac.200800264.
  12. 1 2 Mattausch, Hansjürgen; Hoch, Constantin; Zheng, Chong; Simon, Arndt (February 2007). "La6(C2)3Cl4 und La8(C2)5Cl4: Schichten und Kanäle aus La6(C2)-Clustern". Zeitschrift für anorganische und allgemeine Chemie (in German). 633 (2): 239–245. doi:10.1002/zaac.200600289.
  13. 1 2 3 Uhrlandt, Stefan; Meyer, Gerd (November 1994). "Trigonal-bipyramidale Cluster mit interstitiellen C2-Hanteln in den Chloriden K[M5(C2)]Cl10 (M = La, Ce, Pr) und Rb[M5(C2)]Cl10 (M = Pr, Nd)". Zeitschrift für anorganische und allgemeine Chemie (in German). 620 (11): 1872–1878. doi:10.1002/zaac.19946201107. ISSN   0044-2313.
  14. 1 2 3 Mattausch, Hansjürgen; Simon, Arndt (July 2011). "Variationen modulo 4-4+, 4+3-3+4-, 4-5+, 5-4+4-5+4-4+ bei Seltenerdcarbidhalogeniden". Zeitschrift für anorganische und allgemeine Chemie. 637 (9): 1093–1100. doi:10.1002/zaac.201100055.
  15. Schaloske, Manuel C.; Kienle, Lorenz; Hoch, Constantin; Mattausch, Hansjürgen; Kremer, Reinhard K.; Simon, Arndt (May 2009). "The First Structure with Isolated Carbon-Centered Tetrahedra of Rare-Earth Metals - the New Compound Ce 4 CCl 8". Zeitschrift für anorganische und allgemeine Chemie. 635 (6–7): 1023–1029. doi:10.1002/zaac.200801391.
  16. Schaloske, Manuel C.; Mattausch, Hansjürgen; Simon, Arndt (September 2008). "Crystal structure of hexacerium decachloride dicarbide, Ce6Cl10C2". Zeitschrift für Kristallographie - New Crystal Structures. 223 (3): 189–190. doi: 10.1524/ncrs.2008.0079 . S2CID   93416923.
  17. Schaloske, Manuel C.; Mattausch, Hansjürgen; Kienle, Lorenz; Simon, Arndt (August 2008). "Pr6C2-Doppeltetraeder in Pr6C2Cl10 und Pr6C2Cl5Br5". Zeitschrift für anorganische und allgemeine Chemie. 634 (9): 1493–1500. doi:10.1002/zaac.200800026.
  18. Uhrlandt, Stefan; Meyer, Gerd (November 1994). "Trigonal-bipyramidale Cluster mit interstitiellen C2-Hanteln in den Chloriden K[M5(C2)]Cl10 (M = La, Ce, Pr) und Rb[M5(C2)]Cl10 (M = Pr, Nd)". Zeitschrift für anorganische und allgemeine Chemie (in German). 620 (11): 1872–1878. doi:10.1002/zaac.19946201107. ISSN   0044-2313.
  19. Meyer, Gerd; Uhrlandt, Stefan (September 1993). "The First Trigonal-Bipyramidal Cluster with an Interstitial C2 Unit: [Rb{Pr5(C2)}Cl10]". Angewandte Chemie International Edition in English. 32 (9): 1318–1319. doi:10.1002/anie.199313181. ISSN   0570-0833.
  20. Bauhofer, Christine; Mattausch, Hansjürgen; Kremer, Reinhard K.; Simon, Arndt (September 1995). "Die Gadoliniumcarbidhalogenide Gd4C2X3 (X = Cl, Br)". Zeitschrift für anorganische und allgemeine Chemie (in German). 621 (9): 1501–1507. doi:10.1002/zaac.19956210911. ISSN   0044-2313.
  21. Warkentin, E.; Masse, R.; Simon, A. (August 1982). "Gd10C4Cl18 und Gd10C4Cl17, zwei Seltenerdmetall-Clusterverbindungen mit interstitiellen C2-Gruppen". Zeitschrift für anorganische und allgemeine Chemie (in German). 491 (1): 323–336. doi:10.1002/zaac.19824910142. ISSN   0044-2313.
  22. Ließ, Henning; Meyer, H.-Jürgen; Meyer, Gerd (March 1996). "[Gd4(C2)](Cl, I)6, an Interstitially Stabilized Heteroleptic Gadolinium Sesquihalide". Zeitschrift für anorganische und allgemeine Chemie (in German). 622 (3): 494–500. doi:10.1002/zaac.19966220318. ISSN   0044-2313.
  23. 1 2 Ließ, Henning; Steffen, Frank; Meyer, Gerd (January 1997). "Quaternary chlorides and bromides with interstitially stabilized double octahedra, A2[Gd10(C2)2]Cl19 (A = Rb, Cs), A2[Gd10(C2)2]Br19 (A = K,Rb), Rb2[Tb10(C2)2]Br19, and K2[Gd10(C2)2]Br20". Journal of Alloys and Compounds. 246 (1–2): 242–247. doi:10.1016/S0925-8388(96)02476-0.
  24. Artelt, Holger M.; Meyer, Gerd (September 1994). "Cs3[Tb10(C2)2]Cl21, ein neuer Formel- und Strukturtyp mit isolierten, dimeren Clustern". Zeitschrift für anorganische und allgemeine Chemie (in German). 620 (9): 1527–1531. doi:10.1002/zaac.19946200906. ISSN   0044-2313.
  25. Meyer, Gerd (December 1992). "Cs[Er6C]I12 und Cs2Lu[Lu6C]Cl18: Beispiele für quaternäre reduzierte Halogenide der Lanthanide mit isolierten "Clustern"". Zeitschrift für anorganische und allgemeine Chemie (in German). 618 (12): 18–25. doi:10.1002/zaac.19926180104. ISSN   0044-2313.
  26. Ströbele, Markus; Meyer, H.-Jürgen (2010-07-05). "The Trigonal Prismatic Cluster Compound W 6 CCl 15 and a Carambolage of Tungsten Clusters in the Structure of the Heteroleptic Cluster Compound W 30 C 2 (Cl,Br) 68". Inorganic Chemistry. 49 (13): 5986–5991. doi:10.1021/ic100516t. ISSN   0020-1669. PMID   20521794.
  27. 1 2 Weisser, Martina; Ströbele, Markus; Meyer, H.-Jürgen (November 2005). "A synthesis route for carbon-centered triprismo-hexatungsten cluster compounds and the crystal structure of Cs[W6CCl18]·CH3OH". Comptes Rendus Chimie. 8 (11–12): 1820–1826. doi:10.1016/j.crci.2005.02.034.
  28. 1 2 3 4 5 Weisser, Martina; Burgert, Ralf; Schnöckel, Hansgeorg; Meyer, H.-Jürgen (April 2008). "Synthese und Untersuchung von kohlenstoff- und stickstoffzentrierten (Z) trigonal-prismatischen Wolframclustern des Formeltyps A[W6ZCl18]". Zeitschrift für anorganische und allgemeine Chemie (in German). 634 (4): 633–640. doi:10.1002/zaac.200700474.
  29. 1 2 3 Welch, Eric J.; Crawford, Nathan R. M.; Bergman, Robert G.; Long, Jeffrey R. (2003-09-01). "New Routes to Transition Metal-Carbido Species: Synthesis and Characterization of the Carbon-Centered Trigonal Prismatic Clusters [W 6 CCl 18 ] n - ( n = 1, 2, 3)". Journal of the American Chemical Society. 125 (38): 11464–11465. doi:10.1021/ja035962v. ISSN   0002-7863. PMID   13129326.
  30. 1 2 3 Mos, Agnieszka; Ströbele, Markus; Meyer, H.-Jürgen (October 2015). "Carbon Centered Trigonal Prismatic Tungsten Clusters [W 6 CCl 18 ] n- ( n = 1, 2) containing Copper(I) and Copper(II): Tungsten Clusters [W 6 CCl 18 ] n- ( n = 1, 2) with Copper(I) and (II)". Zeitschrift für anorganische und allgemeine Chemie. 641 (12–13): 2245–2249. doi:10.1002/zaac.201500571.