Disulfur dichloride

Last updated
Disulfur dichloride
Disulfur-dichloride-2D-dimensions.png
Ball and stick model of disulfur dichloride Disulfur-dichloride-3D-balls.png
Ball and stick model of disulfur dichloride
Spacefill model of disulfur dichloride Disulfur-dichloride-3D-vdW.png
Spacefill model of disulfur dichloride
  Sulfur, S
  Chlorine, Cl
Names
IUPAC name
Disulfur dichloride
Systematic IUPAC name
Dichlorodisulfane
Other names
  • Bis[chloridosulfur](SS)
  • Dimeric sulfenic chloride
  • Sulfur monochloride (incorrect name)
Identifiers
3D model (JSmol)
ChemSpider
DrugBank
ECHA InfoCard 100.030.021 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 233-036-2
MeSH Sulfur+monochloride
PubChem CID
RTECS number
  • WS4300000
UNII
UN number 3390
  • InChI=1S/Cl2S2/c1-3-4-2 Yes check.svgY
    Key: PXJJSXABGXMUSU-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/Cl2S2/c1-3-4-2
    Key: PXJJSXABGXMUSU-UHFFFAOYAK
  • ClSSCl
Properties
S2Cl2
Molar mass 135.02 g·mol−1
AppearanceLight-amber to yellow-red, oily liquid [1]
Odor pungent, nauseating, irritating [1]
Density 1.688 g/cm3
Melting point −80 °C (−112 °F; 193 K)
Boiling point 137.1 °C (278.8 °F; 410.2 K)
Decomposes, with loss of HCl
Solubility Soluble in ethanol, benzene, ether, THF, chloroform, CCl4 [2]
Vapor pressure 7 mmHg (20 °C) [1]
62.2·10−6 cm3/mol
1.658
Structure
C2
2 at sulfur atoms
gauche
1.60 D [2]
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Danger
H301, H314, H332, H400
P260, P261, P264, P270, P271, P273, P280, P301+P310, P301+P330+P331, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P310, P312, P321, P330, P363, P391, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
2
1
1
Flash point 118.5 °C (245.3 °F; 391.6 K)
234 °C (453 °F; 507 K)
Lethal dose or concentration (LD, LC):
150 ppm (mouse, 1 min) (1 ppm = 5.52 mg/m3) [3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 ppm (5.52 mg/m3) [1]
REL (Recommended)
C 1 ppm (5.52 mg/m3) [1]
IDLH (Immediate danger)
5 ppm [1] (1 ppm = 5.52 mg/m3)
Safety data sheet (SDS) ICSC 0958
Related compounds
Related sulfur chlorides/oxychlorides
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Disulfur dichloride (or disulphur dichloride by the British English spelling) is the inorganic compound of sulfur and chlorine with the formula S2Cl2. [4] [5] [6] [7] It is an amber oily liquid.

Contents

Sometimes, this compound is incorrectly named sulfur monochloride (or sulphur monochloride by the British English spelling), the name implied by its empirical formula SCl.

S2Cl2 has the structure implied by the formula Cl−S−S−Cl, wherein the dihedral angle between the Cla−S−S and S−S−Clb planes is 85.2°. This structure is referred to as gauche, and is akin to that for H2O2. A rare isomer of S2Cl2 is S=SCl2 (thiothionyl chloride); this isomer forms transiently when S2Cl2 is exposed to UV-radiation (see thiosulfoxides).

Synthesis, basic properties, reactions

Disulfur dichloride is a yellow liquid that fumes in moist air due to reaction with water:

16 S2Cl2 + 16 H2O → 8 SO2 + 32 HCl + 3 S8

It is produced by partial chlorination of elemental sulfur. The reaction proceeds at usable rates at room temperature. In the laboratory, chlorine gas is led into a flask containing elemental sulfur. As disulfur dichloride is formed, the contents become a golden yellow liquid: [8]

S8 + 4 Cl2 → 4 S2Cl2, ΔH = −58.2 kJ/mol

Excess chlorine produces sulfur dichloride, which causes the liquid to become less yellow and more orange-red:

S2Cl2 + Cl2 ⇌ 2 SCl2, ΔH = −40.6 kJ/mol

The reaction is reversible, and upon standing, SCl2 releases chlorine to revert to the disulfur dichloride. Disulfur dichloride has the ability to dissolve large quantities of sulfur, which reflects in part the formation of polysulfanes:

8 S2Cl2 + n S8 → 8 Sn+2Cl2

Disulfur dichloride can be purified by distillation from excess elemental sulfur.

S2Cl2 also arises from the chlorination of CS2 as in the synthesis of thiophosgene or carbon tetrachloride.

Reactions

S2Cl2 hydrolyzes to sulfur dioxide and elemental sulfur. When treated with hydrogen sulfide, polysulfanes are formed as indicated in the following idealized formula:

2 H2S + S2Cl2H2S4 + 2 HCl

It reacts with ammonia to give heptasulfur imide (S7NH) and related S−N rings S8−n(NH)n (n = 2, 3).

Applications

S2Cl2 has been used to introduce C−S bonds. In the presence of aluminium chloride (AlCl3), S2Cl2 reacts with benzene to give diphenyl sulfide:

8 S2Cl2 + 16 C6H6 → 8 (C6H5)2S + 16 HCl + S8

Anilines (1) react with S2Cl2 in the presence of NaOH to give 1,2,3-benzodithiazolium chloride (2) (Herz reaction) which can be transformed into ortho-aminothiophenolates (3), these species are precursors to thioindigo dyes.

Herzrxn.png

It is also used to prepare mustard gas via ethylene at 60 °C (the Levinstein process):

8 S2Cl2 + 16 H2C=CH2 → 8 (ClCH2CH2)2S + S8

Other uses of S2Cl2 include the manufacture of sulfur dyes, insecticides, and synthetic rubbers. It is also used in cold vulcanization of rubbers, as a polymerization catalyst for vegetable oils and for hardening soft woods. [9]

Safety and regulation

S2Cl2 can be used to produce bis(2-chloroethyl)sulfide S(CH2CH2Cl)2, known as the mustard gas: [9]

S2Cl2 + 2 H2C=CH2 → S(CH2CH2Cl)2 + "S"

Consequently, it is listed in Schedule 3 of the Chemical Weapons Convention. Facilities that produce and/or process and/or consume scheduled chemicals may be subject to control, reporting mechanisms and inspection by the Organisation for the Prohibition of Chemical Weapons.

Related Research Articles

<span class="mw-page-title-main">Copper(II) chloride</span> Chemical compound

Copper(II) chloride, also known as cupric chloride, is an inorganic compound with the chemical formula CuCl2. The monoclinic yellowish-brown anhydrous form slowly absorbs moisture to form the orthorhombic blue-green dihydrate CuCl2·2H2O, with two water molecules of hydration. It is industrially produced for use as a co-catalyst in the Wacker process.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Phosphorus pentachloride</span> Chemical compound

Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

The chemical compound 1,2-dichloroethane, commonly known as ethylene dichloride (EDC), is a chlorinated hydrocarbon. It is a colourless liquid with a chloroform-like odour. The most common use of 1,2-dichloroethane is in the production of vinyl chloride, which is used to make polyvinyl chloride (PVC) pipes, furniture and automobile upholstery, wall coverings, housewares, and automobile parts. 1,2-Dichloroethane is also used generally as an intermediate for other organic chemical compounds, and as a solvent. It forms azeotropes with many other solvents, including water and other chlorocarbons.

<span class="mw-page-title-main">Tetrasulfur tetranitride</span> Chemical compound

Tetrasulfur tetranitride is an inorganic compound with the formula S4N4. This gold-poppy coloured solid is the most important binary sulfur nitride, which are compounds that contain only the elements sulfur and nitrogen. It is a precursor to many S-N compounds and has attracted wide interest for its unusual structure and bonding.

<span class="mw-page-title-main">Sulfuryl chloride</span> Chemical compound

Sulfuryl chloride is an inorganic compound with the formula SO2Cl2. At room temperature, it is a colorless liquid with a pungent odor. Sulfuryl chloride is not found in nature, as can be inferred from its rapid hydrolysis.

Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

<span class="mw-page-title-main">Sulfur dichloride</span> Chemical compound

Sulfur dichloride is the chemical compound with the formula SCl2. This cherry-red liquid is the simplest sulfur chloride and one of the most common, and it is used as a precursor to organosulfur compounds. It is a highly corrosive and toxic substance, and it reacts on contact with water to form chlorine-containing acids.

<span class="mw-page-title-main">Disulfur decafluoride</span> Chemical compound

Disulfur decafluoride is a chemical compound with the formula S2F10. It was discovered in 1934 by Denbigh and Whytlaw-Gray. Each sulfur atom of the S2F10 molecule is octahedral, and surrounded by five fluorine atoms and one sulfur atom. The two sulfur atoms are connected by a single bond. In the S2F10 molecule, the oxidation state of each sulfur atoms is +5, but their valency is 6. S2F10 is highly toxic, with toxicity four times that of phosgene.

<span class="mw-page-title-main">Sulfur tetrafluoride</span> Chemical compound

Sulfur tetrafluoride is the chemical compound with the formula SF4. It is a colorless corrosive gas that releases dangerous HF upon exposure to water or moisture. Despite these unwelcome characteristics, this compound is a useful reagent for the preparation of organofluorine compounds, some of which are important in the pharmaceutical and specialty chemical industries.

<span class="mw-page-title-main">Thiophosgene</span> Chemical compound

Thiophosgene is a red liquid with the formula CSCl2. It is a molecule with trigonal planar geometry. There are two reactive C–Cl bonds that allow it to be used in diverse organic syntheses.

<span class="mw-page-title-main">Arsenic trichloride</span> Chemical compound

Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.

A polysulfane is a chemical compound of formula H2Sn, where n > 1. Compounds containing 2 – 8 sulfur atoms have been isolated, longer chain compounds have been detected, but only in solution. H2S2 is colourless, higher members are yellow with the colour increasing with the sulfur content. In the chemical literature the term polysulfanes is sometimes used for compounds containing −(S)n, e.g. organic polysulfanes R1−(S)n−R2.

Selenium monochloride or diselenium dichloride is an inorganic compound with the formula Se2Cl2. Although a common name for the compound is selenium monochloride, reflecting its empirical formula, IUPAC does not recommend that name, instead preferring the more descriptive diselenium dichloride.

<span class="mw-page-title-main">Perchloromethyl mercaptan</span> Chemical compound

Perchloromethyl mercaptan is the organosulfur compound with the formula CCl3SCl. It is mainly used as an intermediate for the synthesis of dyes and fungicides (captan, folpet). It is a colorless oil, although commercial samples are yellowish. It is insoluble in water but soluble in organic solvents. It has a foul, unbearable, acrid odor. Perchloromethyl mercaptan is the original name. The systematic name is trichloromethanesulfenyl chloride, because the compound is a sulfenyl chloride, not a mercaptan.

<span class="mw-page-title-main">Titanocene pentasulfide</span> Chemical compound

Titanocene pentasulfide is the organotitanium compound with the formula (C5H5)2TiS5, commonly abbreviated as Cp2TiS5. This metallocene exists as a bright red solid that is soluble in organic solvents. It is of academic interest as a precursor to unusual allotropes of elemental sulfur as well as some related inorganic rings.

<span class="mw-page-title-main">Lead compounds</span> Type of compound

Compounds of lead exist with lead in two main oxidation states: +2 and +4. The former is more common. Inorganic lead(IV) compounds are typically strong oxidants or exist only in highly acidic solutions.

In chemistry, oxychlorination is a process for generating the equivalent of chlorine gas (Cl2) from hydrogen chloride and oxygen. This process is attractive industrially because hydrogen chloride is less expensive than chlorine.

<span class="mw-page-title-main">Disulfur diiodide</span> Chemical compound

Disulfur diiodide is an unstable inorganic chemical compound with the chemical formula S2I2. Its empirical formula is SI. It is a red-brown solid that decomposes above −30 °C to elemental sulfur and iodine.

<span class="mw-page-title-main">Bis(2-chloroethyl)sulfide</span> Chemical compound formerly used in warfare

Bis(2-chloroethyl)sulfide is the organosulfur compound with the formula (ClCH2CH2)2S. It is a prominent member of a family of cytotoxic and blister agents known as mustard agents. Sometimes referred to as mustard gas, the term is technically incorrect: bis(2-chloroethyl)sulfide is a liquid at room temperature. In warfare it was dispersed in the form of a fine mist of liquid droplets.

References

  1. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0578". National Institute for Occupational Safety and Health (NIOSH).
  2. 1 2 Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN   0-07-049439-8
  3. "Sulfur monochloride". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. Holleman, A. F.; Wiberg, E. Inorganic Chemistry Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  5. Hartman, W. W.; Smith, L. A.; Dickey, J. B. (1934). "Diphenylsulfide". Organic Syntheses . 14: 36.; Collective Volume, vol. 2, p. 242
  6. R. J. Cremlyn An Introduction to Organosulfur Chemistry John Wiley and Sons: Chichester (1996). ISBN   0-471-95512-4
  7. Garcia-Valverde M., Torroba T. (2006). "Heterocyclic chemistry of sulfur chlorides – Fast ways to complex heterocycles". European Journal of Organic Chemistry. 2006 (4): 849–861. doi:10.1002/ejoc.200500786.
  8. F. Fehér "Dichlorodisulfane" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 371.
  9. 1 2 Lauss, Hans-Dietrich; Steffens, Wilfried (2000). "Sulfur Halides". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a25_623. ISBN   3527306730.