Dichloroacetylene

Last updated
Dichloroacetylene
Dichloroacetylene.svg
Dichloroacetylene-from-IR-3D-bs-17.png
Dichloroacetylene-from-IR-3D-sf.png
Dikloroasetilen.png
Dichloroacetylene
(with tetrachloroethylene as the stabiliser)
Names
IUPAC name
Dichloroethyne
Other names
DCA, dichloroethyne
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.149.197 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • AP1080000
UNII
  • InChI=1S/C2Cl2/c3-1-2-4
    Key: ZMJOVJSTYLQINE-UHFFFAOYSA-N
  • InChI=1/C2Cl2/c3-1-2-4
    Key: ZMJOVJSTYLQINE-UHFFFAOYAO
  • C(#CCl)Cl
Properties
C2Cl2
Molar mass 94.927 [1]
Appearancecolorless oily liquid [1]
Odor disagreeable, sweetish
Density 1.26 g/cm3
Melting point −66 to −64 °C (−87 to −83 °F; 207 to 209 K)
Boiling point 33 °C (91 °F; 306 K) explodes
insoluble
Solubility soluble in acetone, ethanol, ether
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
explosive, potential carcinogen [1]
GHS labelling:
GHS-pictogram-explos.svg GHS-pictogram-silhouette.svg GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
H200, H319, H330, H335, H351, H370, H372, H373
P260, P261, P264, P270, P271, P280, P284, P304+P340, P310, P312, P320, P321, P337+P313, P403+P233, P405, P501
NIOSH (US health exposure limits):
PEL (Permissible)
none [1]
REL (Recommended)
Ca C 0.1 ppm (0.4 mg/m3) [1]
IDLH (Immediate danger)
Ca (N.D.) [1]
Related compounds
Other anions
Acetylene, Dibromoacetylene, Difluoroacetylene, Diiodoacetylene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dichloroacetylene (DCA) is an organochlorine compound with the formula C2Cl2. [2] It is a colorless, explosive liquid that has a sweet and "disagreeable" odor. [3]

Contents

Production

Dichloroacetylene was first synthesized in 1930. [2]

Ether solutions of dichloroacetylene are relatively stable, and such solution can be safely generated by dehydrochlorination of trichlorethylene. A popular procedure uses potassium hydride as the base: [4]

Cl2C=CHCl + KH → ClC≡CCl + KCl + H2

A trace of methanol is required.

It has also been generated (and used in situ) using lithium diisopropylamide under anhydrous conditions [5] as well as potassium hydroxide. [6] Dichloroacetylene can occur and be stable in air at concentrations of up to 200 parts per million if certain other compounds, such as ether, with which it forms an azeotrope (boiling point of 32 °C), and trichloroethylene, [7] are also present. [8]

Adventitious routes

It is a by-product in the production of vinylidene chloride. [9] For instance, it can be formed from trichloroethylene. [10] [11] It is also possible to produce dichloroacetylene from trichloroethylene at low concentrations by running the trichloroethylene through nitrogen at 120 °C in the presence of dry potassium hydroxide. [12]

Reactions

Dichloroacetylene reacts with oxygen to give phosgene: [12]

ClC≡CCl + O2 → Cl2CO + CO

Dichloroacetylene, being electrophilic, adds nucleophiles, such as amines:

ClC≡CCl + R2NH → Cl(H)C=CCl(NR2)

Biological role and toxicity

Dichloroacetylene causes neurological disorders, [9] among other problems. [13] [14] Studies on male rats and rabbits have shown that inhalation of dichloroacetylene can cause tubular necrosis, focal necrosis, and other nephrotoxic effects. Additionally, the rabbits that were given dichloroacetylene experienced hepatotoxic and neuropathological effects. Inhalation of dichloroacetylene also causes benign tumors of the livers and kidneys of rats. The chemical also caused increased instances of lymphomas. [9] It also causes weight loss in animals. [13] 3.5% of a dose of dichloroacetylene remains in the corpses of male Wistar rats. [9] The LC50s of mice exposed to dichloroacetylene are 124 parts per million for a 1-hour exposure by inhalation and 19 parts per million for a 6-hour exposure by inhalation. [12] The chemical is ingested primarily through glutathione-dependent systems. Glutathione also reacts with it. Hepatic and renal glutathione S-transferases serve as catalysts to this reaction. While dichloroacetylene is nephrotoxic in rats, it does not show any signs of nephrotoxicity in humans. [7]

Dichloroacetylene has mutagenic effects on Salmonella typhimurium . [9]

The maximum safe concentration of dichloroacetylene in air is 0.1 parts per million. [15] It is unsafe to store dichloroacetylene in close proximity to potassium, sodium, or aluminium powder. [3]

Like trichloroethylene, dichloroacetylene is metabolized to S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in vivo . [16] [17]

According to the Department of Transportation, it is forbidden to ship dichloroacetylene. [3]

Additional reading

See also

Related Research Articles

<span class="mw-page-title-main">Carbon tetrachloride</span> Chemical compound

Carbon tetrachloride, also known by many other names (such as carbon tet for short and tetrachloromethane, also recognised by the IUPAC) is a chemical compound with the chemical formula CCl4. It is a non-flammable, dense, colourless liquid with a "sweet" chloroform-like odour that can be detected at low levels. It was formerly widely used in fire extinguishers, as a precursor to refrigerants and as a cleaning agent, but has since been phased out because of environmental and safety concerns. Exposure to high concentrations of carbon tetrachloride can affect the central nervous system and degenerate the liver and kidneys. Prolonged exposure can be fatal.

<span class="mw-page-title-main">Tetrachloroethylene</span> Chemical compound in very wide use

Tetrachloroethylene, also known under the systematic name tetrachloroethene, or perchloroethylene, and abbreviations such as "perc", and "PCE", is a chlorocarbon with the formula Cl2C=CCl2. It is a colorless liquid widely used for dry cleaning of fabrics, hence it is sometimes called "dry-cleaning fluid". It also has its uses as an effective automotive brake cleaner. It has a mild sweet, sharp odor, detectable by most people at a concentration of 50 ppm.

<span class="mw-page-title-main">1,2-Dibromoethane</span> Chemical compound

1,2-Dibromoethane, also known as ethylene dibromide (EDB), is an organobromine compound with the chemical formula C
2
H
4
Br
2
. Although trace amounts occur naturally in the ocean, where it is probably formed by algae and kelp, it is mainly synthetic. It is a dense colorless liquid with a faint, sweet odor, detectable at 10 ppm, and is a widely used and sometimes-controversial fumigant. The combustion of 1,2-dibromoethane produces hydrogen bromide gas that is significantly corrosive.

<span class="mw-page-title-main">Vinyl chloride</span> Chemical compound

Vinyl chloride is an organochloride with the formula H2C=CHCl. It is also called vinyl chloride monomer (VCM) or chloroethene. This colorless compound is an important industrial chemical chiefly used to produce the polymer, poly(vinyl chloride) (PVC). Vinyl chloride monomer is among the top twenty largest petrochemicals (petroleum-derived chemicals) in world production. The United States remains the largest vinyl chloride manufacturing region because of its low-production-cost position in chlorine and ethylene raw materials. China is also a large manufacturer and one of the largest consumers of vinyl chloride. Vinyl chloride is a flammable gas that has a sweet odor and is carcinogenic. It can be formed in the environment when soil organisms break down chlorinated solvents. Vinyl chloride that is released by industries or formed by the breakdown of other chlorinated chemicals can enter the air and drinking water supplies. Vinyl chloride is a common contaminant found near landfills. Before the 1970s, vinyl chloride was used as an aerosol propellant and refrigerant.

<span class="mw-page-title-main">Trichloroethylene</span> C2HCl3, widely used industrial solvent

Trichloroethylene (TCE) is a halocarbon with the formula C2HCl3, commonly used as an industrial degreasing solvent. It is a clear, colourless, non-flammable, volatile liquid with a chloroform-like pleasant mild smell and sweet taste. Its IUPAC name is trichloroethene. Trichloroethylene has been sold under a variety of trade names. Industrial abbreviations include TCE, trichlor, Trike, Tricky and tri. Under the trade names Trimar and Trilene, it was used as a volatile anesthetic and as an inhaled obstetrical analgesic. It should not be confused with the similar 1,1,1-trichloroethane, which is commonly known as chlorothene.

<span class="mw-page-title-main">Bromoform</span> Chemical compound

Bromoform is an organic compound with the chemical formula CHBr3. It is a colorless liquid at room temperature, with a high refractive index and a very high density. Its sweet odor is similar to that of chloroform. It is one of the four haloforms, the others being fluoroform, chloroform, and iodoform. It is a brominated organic solvent. Currently its main use is as a laboratory reagent. It is very slightly soluble in water and is miscible with alcohol, benzene, chloroform, ether, petroleum ether, acetone and oils.

Dimethylformamide is an organic compound with the chemical formula HCON(CH3)2. Its structure is HC(=O)−N(−CH3)2. Commonly abbreviated as DMF, this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.

<span class="mw-page-title-main">1,4-Dioxane</span> Chemical compound

1,4-Dioxane is a heterocyclic organic compound, classified as an ether. It is a colorless liquid with a faint sweet odor similar to that of diethyl ether. The compound is often called simply dioxane because the other dioxane isomers are rarely encountered.

<span class="mw-page-title-main">Ethylbenzene</span> Hydrocarbon compound; precursor to styrene and polystyrene

Ethylbenzene is an organic compound with the formula C6H5CH2CH3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline. This monocyclic aromatic hydrocarbon is important in the petrochemical industry as a reaction intermediate in the production of styrene, the precursor to polystyrene, a common plastic material. In 2012, more than 99% of ethylbenzene produced was consumed in the production of styrene.

<span class="mw-page-title-main">Chloroprene</span> Chemical compound

Chloroprene (IUPAC name 2-chlorobuta-1,3-diene) is a chemical compound with the molecular formula CH2=CCl−CH=CH2. Chloroprene is a colorless volatile liquid, almost exclusively used as a monomer for the production of the polymer polychloroprene, better known as neoprene, a type of synthetic rubber.

<span class="mw-page-title-main">Hexamethylphosphoramide</span> Chemical compound

Hexamethylphosphoramide, often abbreviated HMPA, is a phosphoramide (an amide of phosphoric acid) with the formula [(CH3)2N]3PO. This colorless liquid is a useful reagent in organic synthesis.

Iodomethane, also called methyl iodide, and commonly abbreviated "MeI", is the chemical compound with the formula CH3I. It is a dense, colorless, volatile liquid. In terms of chemical structure, it is related to methane by replacement of one hydrogen atom by an atom of iodine. It is naturally emitted by rice plantations in small amounts. It is also produced in vast quantities estimated to be greater than 214,000 tons annually by algae and kelp in the world's temperate oceans, and in lesser amounts on land by terrestrial fungi and bacteria. It is used in organic synthesis as a source of methyl groups.

1,2-Dichloroethene, commonly called 1,2-dichloroethylene or 1,2-DCE, is the name for a pair of organochlorine compounds with the molecular formula C2H2Cl2. They are both colorless liquids with a sweet odor. It can exist as either of two geometric isomers, cis-1,2-dichloroethene or trans-1,2-dichloroethene, but is often used as a mixture of the two. They have modest solubility in water. These compounds have some applications as a degreasing solvent. In contrast to most cis-trans compounds, the Z isomer (cis) is more stable than the E isomer (trans) by 0.4 kcal/mol.

<span class="mw-page-title-main">Nickel(II) oxide</span> Chemical compound

Nickel(II) oxide is the chemical compound with the formula NiO. It is the principal oxide of nickel. It is classified as a basic metal oxide. Several million kilograms are produced annually of varying quality, mainly as an intermediate in the production of nickel alloys. The mineralogical form of NiO, bunsenite, is very rare. Other nickel oxides have been claimed, for example: Nickel(III) oxide(Ni
2
O
3
) and NiO
2
, but they have yet to be proven by X-ray crystallography in bulk. Nickel(III) oxide nanoparticles have recently (2015) been characterized using powder X-ray diffraction and electron microscopy.

Potassium arsenite (KAsO2) is an inorganic compound that exists in two forms, potassium meta-arsenite (KAsO2) and potassium ortho-arsenite (K3AsO3). It is composed of arsenite ions (AsO33− or AsO2) with arsenic always existing in the +3 oxidation state. Like many other arsenic containing compounds, potassium arsenite is highly toxic and carcinogenic to humans. Potassium arsenite forms the basis of Fowler’s solution, which was historically used as a medicinal tonic, but due to its toxic nature its use was discontinued. Potassium arsenite is still, however, used as a rodenticide.

<span class="mw-page-title-main">1,1,2,2-Tetrachloroethane</span> Chemical compound

1,1,2,2-tetrachloroethane (TeCA), also known by the brand names Bonoform, Cellon and Westron, is an organic compound. It is colorless liquid and has a sweet odor. It is used as an industrial solvent and as a separation agent. TeCA is toxic and it can be inhaled, consumed or absorbed through the skin. After exposure, nausea, dizziness or even liver damage may occur.

<span class="mw-page-title-main">Sodium bisulfite</span> Chemical compound

Sodium bisulfite (or sodium bisulphite, sodium hydrogen sulfite) is a chemical mixture with the approximate chemical formula NaHSO3. Sodium bisulfite in fact is not a real compound, but a mixture of salts that dissolve in water to give solutions composed of sodium and bisulfite ions. It appears in form of white or yellowish-white crystals with an odor of sulfur dioxide. Regardless of its ill-defined nature, sodium bisulfite is used in many different industries such as a food additive with E number E222 in the food industry, a reducing agent in the cosmetic industry, and a decomposer of residual hypochlorite used in the bleaching industry.

Methacrylonitrile, MeAN in short, is a chemical compound that is an unsaturated aliphatic nitrile, widely used in the preparation of homopolymers, copolymers, elastomers, and plastics and as a chemical intermediate in the preparation of acids, amides, amines, esters, and other nitriles. MeAN is also used as a replacement for acrylonitrile in the manufacture of an acrylonitrile/butadiene/styrene-like polymer. It is a clear and colorless liquid, that has a bitter almond smell.

<span class="mw-page-title-main">Glycidamide</span> Chemical compound

Glycidamide is an organic compound with the formula H2NC(O)C2H3O. It is a colorless oil. Structurally, it contains adjacent amides and epoxide functional groups. It is a bioactive, potentially toxic or even carcinogenic metabolite of acrylonitrile and acrylamide. It is a chiral molecule.

<span class="mw-page-title-main">Methyl fluoroacetate</span> Chemical compound

Methyl fluoroacetate (MFA) is an organic compound with the chemical formula FCH2CO2CH3. It is an extremely toxic methyl ester of fluoroacetic acid. It is a colorless, odorless liquid at room temperature. It is used as a laboratory chemical and as a rodenticide. Because of its extreme toxicity, MFA was studied for potential use as a chemical weapon.

References

  1. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0188". National Institute for Occupational Safety and Health (NIOSH).
  2. 1 2 Henning Hopf; Bernhard Witulski (1995). "Functionalized Acetylenes in Organic Synthesis - The Case of the 1-Cyano- and the 1-Halogenoacetylenes". In Stang, Peter J.; Diederich, François (eds.). Modern Acetylene Chemistry. Weinheim: VCH. pp. 33–66. doi:10.1002/9783527615278.ch02. ISBN   9783527615261.
  3. 1 2 3 Pohanish, Richard P. (2011), Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens, William Andrew, ISBN   9781437778694 [ page needed ]
  4. Denis, Jean Noel; Moyano, Albert; Greene, Andrew E. (1987). "Practical synthesis of dichloroacetylene". The Journal of Organic Chemistry. 52 (15): 3461–3462. doi:10.1021/jo00391a059.
  5. "Dichlorovinylation of an Enolate: 8-Ethynyl-8-Methyl-1,4-Dioxaspiro[4.5]Dec-6-Ene". Organic Syntheses. 64: 73. 1986. doi:10.15227/orgsyn.064.0073.
  6. Siegel, J.; Jones, Richard Arvin.; Kurlansik, L. (1970). "Safe and Convenient Synthesis of Dichloroacetylene". The Journal of Organic Chemistry. 35 (9): 3199. doi:10.1021/jo00834a090.
  7. 1 2 Valacchi, Giuseppe; Davis, Paul A., eds. (January 1, 2008), Oxidants in Biology: A Question of Balance, Springer Science+Business Media, ISBN   9781402083990 [ page needed ]
  8. Proceedings, Aerospace Medical Research Laboratory, 1966[ page needed ]
  9. 1 2 3 4 5 "Dichloroacetylene" (PDF), IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 39: 369–78, 1986, PMID   3465694
  10. John T. James; Harold L. Kaplan; Martin E. Coleman (1996), B5 Dichloroacetylene, doi:10.17226/5435, hdl: 2060/19970023991 , ISBN   978-0-309-05629-8 , retrieved July 3, 2013
  11. Greim, H; Wolff, T; Höfler, M; Lahaniatis, E (1984), "Formation of dichloroacetylene from trichloroethylene in the presence of alkaline material--possible cause of intoxication after abundant use of chloroethylene-containing solvents", Archives of Toxicology, 56 (2): 74–7, doi:10.1007/bf00349074, PMID   6532380, S2CID   19576314
  12. 1 2 3 Reichert, D.; Ewald, D.; Henschler, D. (1975), "Generation and inhalation toxicity of dichloroacetylene", Food and Cosmetics Toxicology, 13 (5): 511–5, doi:10.1016/0015-6264(75)90004-8, PMID   1201833
  13. 1 2 Dichloroacetylene, November 18, 2010, retrieved July 3, 2013
  14. Dichloroacetylene , retrieved July 3, 2013
  15. Hazardous Material Fact Sheet (PDF), April 1997, retrieved July 4, 2013
  16. Purich, Daniel L., ed. (September 15, 2009), Advances in Enzymology and Related Areas of Molecular Biology, Amino Acid Metabolism, John Wiley & Sons, ISBN   9780470123973 [ page needed ]
  17. Kanhai, Wolfgang; Dekant, Wolfgang; Henschler, Dietrich (January 1989). "Metabolism of the nephrotoxin dichloroacetylene by glutathione conjugation". Chemical Research in Toxicology. 2 (1): 51–56. doi:10.1021/tx00007a009. eISSN   1520-5010. ISSN   0893-228X. PMID   2519231.