Potassium hydroxide

Last updated
Potassium hydroxide
Potassium-hydroxide-xtal-3D-vdW.png
Potassium hydroxide.jpg
Names
IUPAC name
Potassium hydroxide
Other names
  • Caustic potash
  • Lye
  • Potash lye
  • Potassia
  • Potassium hydrate
  • KOH
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.013.802 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 215-181-3
E number E525 (acidity regulators, ...)
PubChem CID
RTECS number
  • TT2100000
UNII
UN number 1813
  • InChI=1S/K.H2O/h;1H2/q+1;/p-1 Yes check.svgY
    Key: KWYUFKZDYYNOTN-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/K.H2O/h;1H2/q+1;/p-1
    Key: KWYUFKZDYYNOTN-REWHXWOFAT
  • [K+].[OH-]
Properties
KOH
Molar mass 56.105 g·mol−1
Appearancewhite solid, deliquescent
Odor odorless
Density 2.044 g/cm3 (20 °C) [1]
2.12 g/cm3 (25 °C) [2]
Melting point 410 [3] [4]  °C (770 °F; 683 K)
Boiling point 1,327 °C (2,421 °F; 1,600 K)
85 g/100 mL (-23.2 °C)
97 g/100 mL (0 °C)
121 g/100 mL (25 °C)
138.3 g/100 mL (50 °C)
162.9 g/100 mL (100 °C) [1] [5]
Solubility soluble in alcohol, glycerol
insoluble in ether, liquid ammonia
Solubility in methanol 55 g/100 g (28 °C) [2]
Solubility in isopropanol ~14 g / 100 g (28 °C)
Acidity (pKa)14.7 [6]
22.0·10−6 cm3/mol
1.409 (20 °C)
Thermochemistry
65.87 J/mol·K [2]
Std molar
entropy
(S298)
79.32 J/mol·K [2] [7]
-425.8 kJ/mol [2] [7]
-380.2 kJ/mol [2]
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg [8]
Danger
H290, H302, H314 [8]
P280, P305+P351+P338, P310 [8]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard ALK: Alkaline
3
0
1
ALK
Flash point nonflammable
Lethal dose or concentration (LD, LC):
273 mg/kg (oral, rat) [9]
NIOSH (US health exposure limits):
PEL (Permissible)
none [10]
REL (Recommended)
C 2 mg/m3 [10]
IDLH (Immediate danger)
N.D. [10]
Safety data sheet (SDS) ICSC 0357
Related compounds
Other anions
Potassium hydrosulfide
Potassium amide
Other cations
Lithium hydroxide
Sodium hydroxide
Rubidium hydroxide
Caesium hydroxide
Related compounds
Potassium oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Potassium hydroxide is an inorganic compound with the formula K OH, and is commonly called caustic potash.

Contents

Along with sodium hydroxide (NaOH), KOH is a prototypical strong base. It has many industrial and niche applications, most of which utilize its caustic nature and its reactivity toward acids. An estimated 700,000 to 800,000 tonnes were produced in 2005. KOH is noteworthy as the precursor to most soft and liquid soaps, as well as numerous potassium-containing chemicals. It is a white solid that is dangerously corrosive. [11]

Properties and structure

KOH exhibits high thermal stability. Because of this high stability and relatively low melting point, it is often melt-cast as pellets or rods, forms that have low surface area and convenient handling properties. These pellets become tacky in air because KOH is hygroscopic. Most commercial samples are ca. 90% pure, the remainder being water and carbonates. [11] Its dissolution in water is strongly exothermic. Concentrated aqueous solutions are sometimes called potassium lyes. Even at high temperatures, solid KOH does not dehydrate readily. [12]

Structure

At higher temperatures, solid KOH crystallizes in the NaCl crystal structure. The OH group is either rapidly or randomly disordered so that it is effectively a spherical anion of radius 1.53 Å (between Cl and F in size). At room temperature, the OH groups are ordered and the environment about the K+ centers is distorted, with K+−OH distances ranging from 2.69 to 3.15 Å, depending on the orientation of the OH group. KOH forms a series of crystalline hydrates, namely the monohydrate KOH · H2O , the dihydrate KOH · 2H2O and the tetrahydrate KOH · 4H2O . [13]

Reactions

Solubility and desiccating properties

About 112 g of KOH dissolve in 100 mL water at room temperature, which contrasts with 100 g/100 mL for NaOH. [14] Thus on a molar basis, KOH is slightly more soluble than NaOH. Lower molecular-weight alcohols such as methanol, ethanol, and propanols are also excellent solvents. They participate in an acid-base equilibrium. In the case of methanol the potassium methoxide (methylate) forms: [15]

KOH + CH3OH → CH3OK + H2O

Because of its high affinity for water, KOH serves as a desiccant in the laboratory. It is often used to dry basic solvents, especially amines and pyridines.

As a nucleophile in organic chemistry

KOH, like NaOH, serves as a source of OH, a highly nucleophilic anion that attacks polar bonds in both inorganic and organic materials. Aqueous KOH saponifies esters:

KOH + RCOOR' → RCOOK + R'OH

When R is a long chain, the product is called a potassium soap. This reaction is manifested by the "greasy" feel that KOH gives when touched; fats on the skin are rapidly converted to soap and glycerol.

Molten KOH is used to displace halides and other leaving groups. The reaction is especially useful for aromatic reagents to give the corresponding phenols. [16]

Reactions with inorganic compounds

Complementary to its reactivity toward acids, KOH attacks oxides. Thus, SiO2 is attacked by KOH to give soluble potassium silicates. KOH reacts with carbon dioxide to give potassium bicarbonate:

KOH + CO2 → KHCO3

Manufacture

Historically, KOH was made by adding potassium carbonate to a strong solution of calcium hydroxide (slaked lime). The salt metathesis reaction results in precipitation of solid calcium carbonate, leaving potassium hydroxide in solution:

Ca(OH)2 + K2CO3 → CaCO3 + 2 KOH

Filtering off the precipitated calcium carbonate and boiling down the solution gives potassium hydroxide ("calcinated or caustic potash"). This method of producing potassium hydroxide remained dominant until the late 19th century, when it was largely replaced by the current method of electrolysis of potassium chloride solutions. [11] The method is analogous to the manufacture of sodium hydroxide (see chloralkali process):

2 KCl + 2 H2O → 2 KOH + Cl2 + H2

Hydrogen gas forms as a byproduct on the cathode; concurrently, an anodic oxidation of the chloride ion takes place, forming chlorine gas as a byproduct. Separation of the anodic and cathodic spaces in the electrolysis cell is essential for this process. [17]

Uses

KOH and NaOH can be used interchangeably for a number of applications, although in industry, NaOH is preferred because of its lower cost.

Catalyst for hydrothermal gasification process

In industry, KOH is a good catalyst for hydrothermal gasification process. In this process, it is used to improve the yield of gas and amount of hydrogen in process. For example, production of coke (fuel) from coal often produces much coking wastewater. In order to degrade it, supercritical water is used to convert it to the syngas containing carbon monoxide, carbon dioxide, hydrogen and methane. Using pressure swing adsorption, we could separate various gases and then use power-to-gas technology to convert them to fuel. [18] On the other hand, the hydrothermal gasification process could degrade other waste such as sewage sludge and waste from food factories.

Precursor to other potassium compounds

Many potassium salts are prepared by neutralization reactions involving KOH. The potassium salts of carbonate, cyanide, permanganate, phosphate, and various silicates are prepared by treating either the oxides or the acids with KOH. [11] The high solubility of potassium phosphate is desirable in fertilizers.

Manufacture of soft soaps

The saponification of fats with KOH is used to prepare the corresponding "potassium soaps", which are softer than the more common sodium hydroxide-derived soaps. Because of their softness and greater solubility, potassium soaps require less water to liquefy, and can thus contain more cleaning agent than liquefied sodium soaps. [19]

As an electrolyte

Potassium carbonate, formed from the hydroxide solution leaking from an alkaline battery LeakedBattery 2701a.jpg
Potassium carbonate, formed from the hydroxide solution leaking from an alkaline battery

Aqueous potassium hydroxide is employed as the electrolyte in alkaline batteries based on nickel-cadmium, nickel-hydrogen, and manganese dioxide-zinc. Potassium hydroxide is preferred over sodium hydroxide because its solutions are more conductive. [20] The nickel–metal hydride batteries in the Toyota Prius use a mixture of potassium hydroxide and sodium hydroxide. [21] Nickel–iron batteries also use potassium hydroxide electrolyte.

Food industry

In food products, potassium hydroxide acts as a food thickener, pH control agent and food stabilizer. The FDA considers it generally safe as a direct food ingredient when used in accordance with Good Manufacturing Practices. [22] It is known in the E number system as E525.

Niche applications

Like sodium hydroxide, potassium hydroxide attracts numerous specialized applications, virtually all of which rely on its properties as a strong chemical base with its consequent ability to degrade many materials. For example, in a process commonly referred to as "chemical cremation" or "resomation", potassium hydroxide hastens the decomposition of soft tissues, both animal and human, to leave behind only the bones and other hard tissues. [23] Entomologists wishing to study the fine structure of insect anatomy may use a 10% aqueous solution of KOH to apply this process. [24]

In chemical synthesis, the choice between the use of KOH and the use of NaOH is guided by the solubility or keeping quality of the resulting salt.

The corrosive properties of potassium hydroxide make it a useful ingredient in agents and preparations that clean and disinfect surfaces and materials that can themselves resist corrosion by KOH. [17]

KOH is also used for semiconductor chip fabrication (for example anisotropic wet etching).

Potassium hydroxide is often the main active ingredient in chemical "cuticle removers" used in manicure treatments.

Because aggressive bases like KOH damage the cuticle of the hair shaft, potassium hydroxide is used to chemically assist the removal of hair from animal hides. The hides are soaked for several hours in a solution of KOH and water to prepare them for the unhairing stage of the tanning process. This same effect is also used to weaken human hair in preparation for shaving. Preshave products and some shave creams contain potassium hydroxide to force open the hair cuticle and to act as a hygroscopic agent to attract and force water into the hair shaft, causing further damage to the hair. In this weakened state, the hair is more easily cut by a razor blade.

Potassium hydroxide is used to identify some species of fungi. A 3–5% aqueous solution of KOH is applied to the flesh of a mushroom and the researcher notes whether or not the color of the flesh changes. Certain species of gilled mushrooms, boletes, polypores, and lichens [25] are identifiable based on this color-change reaction. [26]

Safety

Potassium hydroxide and its solutions are severe irritants to skin and other tissue. [27]

Potassium hydroxide spillage, stained red by phenolphthalein Potassium hydroxide spillage.jpg
Potassium hydroxide spillage, stained red by phenolphthalein

See also

Related Research Articles

In chemistry, an alkali is a basic, ionic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The adjective alkaline, and less often, alkalescent, is commonly used in English as a synonym for basic, especially for bases soluble in water. This broad use of the term is likely to have come about because alkalis were the first bases known to obey the Arrhenius definition of a base, and they are still among the most common bases.

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

<span class="mw-page-title-main">Sodium hydroxide</span> Chemical compound with formula NaOH

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH.

<span class="mw-page-title-main">Aqueous solution</span> Solution in which the solvent is water

An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in water would be represented as Na+(aq) + Cl(aq). The word aqueous means pertaining to, related to, similar to, or dissolved in, water. As water is an excellent solvent and is also naturally abundant, it is a ubiquitous solvent in chemistry. Since water is frequently used as the solvent in experiments, the word solution refers to an aqueous solution, unless the solvent is specified.

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the chloralkali process.

<span class="mw-page-title-main">Magnesium carbonate</span> Chemical compound

Magnesium carbonate, MgCO3, is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals.

<span class="mw-page-title-main">Barium hydroxide</span> Chemical compound

Barium hydroxide is a chemical compound with the chemical formula Ba(OH)2. The monohydrate (x = 1), known as baryta or baryta-water, is one of the principal compounds of barium. This white granular monohydrate is the usual commercial form.

<span class="mw-page-title-main">Potassium cyanide</span> Highly toxic crystalline salt

Potassium cyanide is a compound with the formula KCN. It is a colorless salt, similar in appearance to sugar, that is highly soluble in water. Most KCN is used in gold mining, organic synthesis, and electroplating. Smaller applications include jewellery for chemical gilding and buffing. Potassium cyanide is highly toxic, and a dose of 200 to 300 milligrams will kill nearly any human.

The chloralkali process is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide, which are commodity chemicals required by industry. Thirty five million tons of chlorine were prepared by this process in 1987. The chlorine and sodium hydroxide produced in this process are widely used in the chemical industry.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

<span class="mw-page-title-main">Sodium acetate</span> Chemical compound

Sodium acetate, CH3COONa, also abbreviated NaOAc, is the sodium salt of acetic acid. This colorless deliquescent salt has a wide range of uses.

<span class="mw-page-title-main">Sodium aluminate</span> Chemical compound

Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, NaAl(OH)4 (hydrated), Na2O·Al2O3, or Na2Al2O4. Commercial sodium aluminate is available as a solution or a solid.
Other related compounds, sometimes called sodium aluminate, prepared by reaction of Na2O and Al2O3 are Na5AlO4 which contains discrete AlO45− anions, Na7Al3O8 and Na17Al5O16 which contain complex polymeric anions, and NaAl11O17, once mistakenly believed to be β-alumina, a phase of aluminium oxide.

<span class="mw-page-title-main">Copper(II) hydroxide</span> Hydroxide of copper

Copper(II) hydroxide is the hydroxide of copper with the chemical formula of Cu(OH)2. It is a pale greenish blue or bluish green solid. Some forms of copper(II) hydroxide are sold as "stabilized" copper(II) hydroxide, although they likely consist of a mixture of copper(II) carbonate and hydroxide. Cupric hydroxide is a strong base, although its low solubility in water makes this hard to observe directly.

<span class="mw-page-title-main">Sodium sulfide</span> Chemical compound

Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moisture, Na2S immediately hydrates to give sodium hydrosulfide.

<span class="mw-page-title-main">Hexafluorosilicic acid</span> Octahedric silicon compound

Hexafluorosilicic acid is an inorganic compound with the chemical formula H
2
SiF
6
. Aqueous solutions of hexafluorosilicic acid consist of salts of the cation and hexafluorosilicate anion. These salts and their aqueous solutions are colorless.

<span class="mw-page-title-main">Sodium metasilicate</span> Chemical compound

Sodium metasilicate is the chemical substance with formula Na
2
SiO
3
, which is the main component of commercial sodium silicate solutions. It is an ionic compound consisting of sodium cations Na+
and the polymeric metasilicate anions [–SiO2−
3
–]n. It is a colorless crystalline hygroscopic and deliquescent solid, soluble in water but not in alcohols.

<span class="mw-page-title-main">Sodium hydrosulfide</span> Chemical compound

Sodium hydrosulfide is the chemical compound with the formula NaSH. This compound is the product of the half-neutralization of hydrogen sulfide with sodium hydroxide (NaOH). NaSH and sodium sulfide are used industrially, often for similar purposes. Solid NaSH is colorless. The solid has an odor of H2S owing to hydrolysis by atmospheric moisture. In contrast with sodium sulfide, which is insoluble in organic solvents, NaSH, being a 1:1 electrolyte, is more soluble.

<span class="mw-page-title-main">Sodium formate</span> Chemical compound

Sodium formate, HCOONa, is the sodium salt of formic acid, HCOOH. It usually appears as a white deliquescent powder.

The alkali hydroxides are a class of chemical compounds which are composed of an alkali metal cation and the hydroxide anion. The alkali hydroxides are:

References

  1. 1 2 Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 4-80. ISBN   0-8493-0486-5.
  2. 1 2 3 4 5 6 "potassium hydroxide". chemister.ru. Archived from the original on 18 May 2014. Retrieved 8 May 2018.
  3. Otto, H.W; Seward, R.P. (1964). "Phase equilibria in the potassium hydroxide-sodium hydroxide system". J. Chem. Eng. Data. 9 (4): 507–508. doi:10.1021/je60023a009.
  4. Seward, R.P; Martin, K.E. (1949). "The melting point of potassium hydroxide". J. Am. Chem. Soc. 71 (10): 3564–3565. doi:10.1021/ja01178a530.
  5. Seidell, Atherton; Linke, William F. (1952). Solubilities of Inorganic and Organic Compounds. Van Nostrand. Retrieved 2014-05-29.
  6. Popov, K.; et al. (2002). "7Li, 23Na, 39K and 133Cs NMR comparative equilibrium study of alkali metal cation hydroxide complexes in aqueous solutions. First numerical value for CsOH formation". Inorganic Chemistry Communications. 3 (5): 223–225. doi:10.1016/S1387-7003(02)00335-0. ISSN   1387-7003 . Retrieved October 20, 2018.
  7. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN   978-0-618-94690-7.
  8. 1 2 3 Sigma-Aldrich Co., Potassium hydroxide. Retrieved on 2014-05-18.
  9. Chambers, Michael. "ChemIDplus - 1310-58-3 - KWYUFKZDYYNOTN-UHFFFAOYSA-M - Potassium hydroxide [JAN:NF] - Similar structures search, synonyms, formulas, resource links, and other chemical information". chem.sis.nlm.nih.gov. Archived from the original on 12 August 2014. Retrieved 8 May 2018.
  10. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0523". National Institute for Occupational Safety and Health (NIOSH).
  11. 1 2 3 4 Schultz, Heinz; Bauer, Günter; Schachl, Erich; Hagedorn, Fritz; Schmittinger, Peter (2005). "Potassium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH. doi:10.1002/14356007.a22_039. ISBN   978-3-527-30673-2.
  12. Holleman, A. F; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN   978-0-12-352651-9.
  13. Wells, A.F. (1984). Structural Inorganic Chemistry. Oxford: Clarendon Press. ISBN   978-0-19-855370-0.
  14. Seidell, Atherton; Linke, William F. (1952). Solubilities of Inorganic and Organic Compounds. Van Nostrand. Retrieved 2014-05-29.
  15. Platonov, Andrew Y.; Kurzin, Alexander V.; Evdokimov, Andrey N. (2009). "Composition of Vapor and Liquid Phases in the Potassium Hydroxide + Methanol Reaction System at 25 °С". J. Solution Chem. 39 (3): 335–342. doi:10.1007/s10953-010-9505-1. S2CID   97177429.
  16. W. W. Hartman (1923). "p-Cresol". Organic Syntheses . 3: 37. doi:10.15227/orgsyn.003.0037 ; Collected Volumes, vol. 1, p. 175.
  17. 1 2 Römpp Chemie-Lexikon, 9th Ed. (in German)
  18. Chen, Fu; Li, Xiaoxiao; Qu, Junfeng; Ma, Jing; Zhu, Qianlin; Zhang, Shaoliang (2020-01-13). "Gasification of coking wastewater in supercritical water adding alkali catalyst". International Journal of Hydrogen Energy. 45 (3): 1608–1614. Bibcode:2020IJHE...45.1608C. doi: 10.1016/j.ijhydene.2019.11.033 . ISSN   0360-3199. S2CID   213336330.
  19. K. Schumann; K. Siekmann (2005). "Soaps". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a24_247. ISBN   978-3527306732.
  20. D. Berndt; D. Spahrbier (2005). "Batteries". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_343. ISBN   978-3527306732.
  21. "Toyota Prius Hybrid 2010 Model Emergency Response Guide" (PDF). Toyota Motor Corporation. 2009. Archived from the original (PDF) on 2012-03-20.
  22. "Compound Summary for CID 14797 - Potassium Hydroxide". PubChem.
  23. Green, Margaret (January 1952). "A RAPID METHOD FOR CLEARING AND STAINING SPECIMENS FOR THE DEMONSTRATION OF BONE". The Ohio Journal of Science. 52 (1): 31–33. hdl:1811/3896.
  24. Thomas Eisner (2003). For the Love of Insects. Harvard University Press. p. 71.
  25. Elix, J.A.; Stocker-Wörgötter, Elfie (2008). "Chapter 7: Biochemistry and secondary metabolites". In Nash III, Thomas H. (ed.). Lichen Biology (2nd ed.). New York: Cambridge University Press. pp. 118–119. ISBN   978-0-521-69216-8.
  26. Testing Chemical Reactions Archived 2009-10-15 at the Wayback Machine at MushroomExpert.com
  27. Potassium hydroxide, SIDS Initial Assessment Report For SIAM 13. Bern, Switzerland, 6-9 November 2001. Archived 3 January 2018 at the Wayback Machine By Dr. Thaly LAKHANISKY. Date of last Update: February 2002