Potassium chlorate

Last updated
Potassium chlorate
Potassium-chlorate-composition.png
Potassium chlorate-substance.jpg
Names
Other names
Potassium chlorate(V), Potcrate, Berthollet salt
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.021.173 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 223-289-7
PubChem CID
RTECS number
  • FO0350000
UNII
UN number 1485
  • InChI=1S/ClHO3.K/c2-1(3)4;/h(H,2,3,4);/q;+1/p-1 Yes check.svgY
    Key: VKJKEPKFPUWCAS-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/ClHO3.K/c2-1(3)4;/h(H,2,3,4);/q;+1/p-1
    Key: VKJKEPKFPUWCAS-REWHXWOFAC
  • [K+].[O-]Cl(=O)=O
Properties
KClO3
Molar mass 122.55 g mol−1
Appearancewhite crystals or powder
Density 2.32 g/cm3
Melting point 356 °C (673 °F; 629 K)
Boiling point 400 °C (752 °F; 673 K) decomposes [1]
3.13 g/100 mL (0 °C)
4.46 g/100 mL (10 °C)
8.15 g/100 mL (25 °C)
13.21 g/100 mL (40 °C)
53.51 g/100 mL (100 °C)
183 g/100 g (190 °C)
2930 g/100 g (330 °C) [2]
Solubility soluble in glycerol
negligible in acetone and liquid ammonia [1]
Solubility in glycerol 1 g/100 g (20 °C) [1]
42.8·10−6 cm3/mol
1.40835
Structure
monoclinic
Thermochemistry
100.25 J/mol·K [1]
Std molar
entropy
(S298)
142.97 J/mol·K [3] [1]
−391.2 kJ/mol [3] [1]
-289.9 kJ/mol [1]
Hazards
GHS labelling:
GHS-pictogram-rondflam.svg GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg [4]
Danger
H271, H302, H332, H411 [4]
P220, P273 [4]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
2
0
3
OX
Lethal dose or concentration (LD, LC):
1870 mg/kg (oral, rat) [5]
Safety data sheet (SDS) ICSC 0548
Related compounds
Other anions
Potassium bromate
Potassium iodate
Potassium nitrate
Other cations
Ammonium chlorate
Sodium chlorate
Barium chlorate
Related compounds
Potassium chloride
Potassium hypochlorite
Potassium chlorite
Potassium perchlorate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Potassium chlorate is the inorganic compound with the molecular formula KClO3. In its pure form, it is a white solid. After sodium chlorate, it is the second most common chlorate in industrial use. It is a strong oxidizing agent and its most important application is in safety matches. [6] In other applications it is mostly obsolete and has been replaced by safer alternatives in recent decades. It has been used

Contents

Production

On the industrial scale, potassium chlorate is produced by the salt metathesis reaction of sodium chlorate and potassium chloride:

NaClO3 + KCl → NaCl + KClO3

The reaction is driven by the low solubility of potassium chlorate in water. The equilibrium of the reaction is shifted to the right hand side by the continuous precipitation of the product (Le Chatelier's Principle). The precursor sodium chlorate is produced industrially in very large quantities by electrolysis of sodium chloride, common table salt. [6]

The direct electrolysis of KCl in aqueous solution is also used sometimes, in which elemental chlorine formed at the anode reacts with KOH in situ . The low solubility of KClO3 in water causes the salt to conveniently isolate itself from the reaction mixture by simply precipitating out of solution.

Potassium chlorate can be produced in small amounts by disproportionation in a sodium hypochlorite solution followed by metathesis reaction with potassium chloride: [7]

3 NaOCl → 2 NaCl + NaClO3
KCl + NaClO3 → NaCl + KClO3

It can also be produced by passing chlorine gas into a hot solution of caustic potash: [8]

3 Cl2 + 6 KOH → KClO3 + 5 KCl + 3 H2O

According to X-ray crystallography, potassium chlorate is a dense salt-like structure consisting of chlorate and potassium ions in close association.

The crystal structure of potassium chlorate. Color code: red = O, violet = K, green = Cl Potassium-chlorate-crystal-3D-vdW.png
The crystal structure of potassium chlorate. Color code: red = O, violet = K, green = Cl

Uses

Potassium chlorate burning sugar KClO3-sugar1.gif
Potassium chlorate burning sugar

Potassium chlorate was one key ingredient in early firearms percussion caps (primers). It continues in that application, where not supplanted by potassium perchlorate.

Chlorate-based propellants are more efficient than traditional gunpowder and are less susceptible to damage by water. However, they can be extremely unstable in the presence of sulfur or phosphorus and are much more expensive. Chlorate propellants must be used only in equipment designed for them; failure to follow this precaution is a common source of accidents. Potassium chlorate, often in combination with silver fulminate, is used in trick noise-makers known as "crackers", "snappers", "pop-its", "caps" or "bang-snaps", a popular type of novelty firework.

Another application of potassium chlorate is as the oxidizer in a smoke composition such as that used in smoke grenades. Since 2005, a cartridge with potassium chlorate mixed with lactose and rosin is used for generating the white smoke signaling the election of new pope by a papal conclave. [9]

High school and college laboratories often use potassium chlorate to generate oxygen gas. [ citation needed ] It is a far cheaper source than a pressurized or cryogenic oxygen tank. Potassium chlorate readily decomposes if heated while in contact with a catalyst, typically manganese(IV) dioxide (MnO2). Thus, it may be simply placed in a test tube and heated over a burner. If the test tube is equipped with a one-holed stopper and hose, warm oxygen can be drawn off. The reaction is as follows:

2 KClO3(s) + MnO2(cat) → 3 O2(g) + 2 KCl(s)

Heating it in the absence of a catalyst converts it into potassium perchlorate: [8]

4 KClO3 → 3 KClO4 + KCl

With further heating, potassium perchlorate decomposes to potassium chloride and oxygen:

KClO4 → KCl + 2 O2

The safe performance of this reaction requires very pure reagents and careful temperature control. Molten potassium chlorate is an extremely powerful oxidizer and spontaneously reacts with many common materials such as sugar. Explosions have resulted from liquid chlorates spattering into the latex or PVC tubes of oxygen generators and from contact between chlorates and hydrocarbon sealing greases. Impurities in potassium chlorate itself can also cause problems. When working with a new batch of potassium chlorate, it is advisable to take a small sample (~1 gram) and heat it strongly on an open glass plate. Contamination may cause this small quantity to explode, indicating that the chlorate should be discarded.

Potassium chlorate is used in chemical oxygen generators (also called chlorate candles or oxygen candles), employed as oxygen-supply systems of e.g. aircraft, space stations, and submarines, and has been responsible for at least one plane crash. A fire on the space station Mir was traced to oxygen generation candles that use a similar lithium perchlorate. The decomposition of potassium chlorate was also used to provide the oxygen supply for limelights.

Potassium chlorate is used also as a pesticide. In Finland it was sold under trade name Fegabit.

Potassium chlorate can react with sulfuric acid to form a highly reactive solution of chloric acid and potassium sulfate:

2 KClO3 + H2SO4 → 2 HClO3 + K2SO4

The solution so produced is sufficiently reactive that it spontaneously ignites if combustible material (sugar, paper, etc.) is present.

Candy being dropped into molten salt

In schools, molten potassium chlorate is used in screaming jelly babies, Gummy bear, Haribo, and Trolli candy demonstration where the candy is dropped into the molten salt.

In chemical labs it is used to oxidize HCl and release small amounts of gaseous chlorine.

Militant groups in Afghanistan also use potassium chlorate extensively as a key component in the production of improvised explosive devices (IEDs). When significant effort was made to reduce the availability of ammonium nitrate fertilizer in Afghanistan, IED makers started using potassium chlorate as a cheap and effective alternative. In 2013, 60% of IEDs in Afghanistan used potassium chlorate, making it the most common ingredient used in IEDs. [10] Potassium chlorate was also the main ingredient in the car bomb used in 2002 Bali bombings that killed 202 people.

Potassium chlorate is used to force the blossoming stage of the longan tree, causing it to produce fruit in warmer climates. [11]

Safety

Potassium chlorate should be handled with care. It reacts vigorously, and in some cases spontaneously ignites or explodes, when mixed with many combustible materials. It burns vigorously in combination with virtually any combustible material, even those normally only slightly flammable (including ordinary dust and lint). Mixtures of potassium chlorate and a fuel can ignite by contact with sulfuric acid, so it should be kept away from this reagent. Sulfur should be avoided in pyrotechnic compositions containing potassium chlorate, as these mixtures are prone to spontaneous deflagration. Most sulfur contains trace quantities of sulfur-containing acids, and these can cause spontaneous ignition - "Flowers of sulfur" or "sublimed sulfur", despite the overall high purity, contains significant amounts of sulfur acids. Also, mixtures of potassium chlorate with any compound with ignition promoting properties, such as antimony(III) sulfide, are very dangerous to prepare, as they are extremely shock sensitive.

See also

Related Research Articles

<span class="mw-page-title-main">Chlorine</span> Chemical element with atomic number 17 (Cl)

Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

<span class="mw-page-title-main">Perchloric acid</span> Chemical compound

Perchloric acid is a mineral acid with the formula HClO4. It is an oxoacid of chlorine. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.

The term chloride refers to a compound or molecule that contains either a chlorine anion, which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond. Many inorganic chlorides are salts. Many organic compounds are chlorides. The pronunciation of the word "chloride" is.

The chlorite ion, or chlorine dioxide anion, is the halite with the chemical formula of ClO
2
. A chlorite (compound) is a compound that contains this group, with chlorine in the oxidation state of +3. Chlorites are also known as salts of chlorous acid.

<span class="mw-page-title-main">Oxidizing agent</span> Chemical compound used to oxidize another substance in a chemical reaction

An oxidizing agent is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent. In other words, an oxidizer is any substance that oxidizes another substance. The oxidation state, which describes the degree of loss of electrons, of the oxidizer decreases while that of the reductant increases; this is expressed by saying that oxidizers "undergo reduction" and "are reduced" while reducers "undergo oxidation" and "are oxidized". Common oxidizing agents are oxygen, hydrogen peroxide, and the halogens.

<span class="mw-page-title-main">Sodium hypochlorite</span> Chemical compound (known in solution as bleach)

Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.

<span class="mw-page-title-main">Chlorine dioxide</span> Chemical compound

Chlorine dioxide is a chemical compound with the formula ClO2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C. It is usually handled as an aqueous solution. It is commonly used as a bleach. More recent developments have extended its applications in food processing and as a disinfectant.

<span class="mw-page-title-main">Chlorate</span> Anion and term for chemical compounds containing it

Chlorate is the common name of the ClO
3
anion, whose chlorine atom is in the +5 oxidation state. The term can also refer to chemical compounds containing this anion, with chlorates being the salts of chloric acid. Other oxyanions of chlorine can be named "chlorate" followed by a Roman numeral in parentheses denoting the oxidation state of chlorine: e.g., the ClO
4
ion commonly called perchlorate can also be called chlorate(VII).

<span class="mw-page-title-main">Potassium perchlorate</span> Chemical compound

Potassium perchlorate is the inorganic salt with the chemical formula KClO4. Like other perchlorates, this salt is a strong oxidizer when the solid is heated at high temperature although it usually reacts very slowly in solution with reducing agents or organic substances. This colorless crystalline solid is a common oxidizer used in fireworks, ammunition percussion caps, explosive primers, and is used variously in propellants, flash compositions, stars, and sparklers. It has been used as a solid rocket propellant, although in that application it has mostly been replaced by the more performant ammonium perchlorate.

<span class="mw-page-title-main">Sodium chlorate</span> Chemical compound

Sodium chlorate is an inorganic compound with the chemical formula NaClO3. It is a white crystalline powder that is readily soluble in water. It is hygroscopic. It decomposes above 300 °C to release oxygen and leaves sodium chloride. Several hundred million tons are produced annually, mainly for applications in bleaching pulp to produce high brightness paper.

<span class="mw-page-title-main">Sodium chlorite</span> Chemical compound

Sodium chlorite (NaClO2) is a chemical compound used in the manufacturing of paper and as a disinfectant.

<span class="mw-page-title-main">Sodium perchlorate</span> Chemical compound

Sodium perchlorate is an inorganic compound with the chemical formula NaClO4. It consists of sodium cations Na+ and perchlorate anions ClO−4. It is a white crystalline, hygroscopic solid that is highly soluble in water and ethanol. It is usually encountered as sodium perchlorate monohydrate NaClO4·H2O. The compound is noteworthy as the most water-soluble of the common perchlorate salts.

<span class="mw-page-title-main">Lithium perchlorate</span> Chemical compound

Lithium perchlorate is the inorganic compound with the formula LiClO4. This white or colourless crystalline salt is noteworthy for its high solubility in many solvents. It exists both in anhydrous form and as a trihydrate.

A chemical oxygen generator is a device that releases oxygen via a chemical reaction. The oxygen source is usually an inorganic superoxide, chlorate, or perchlorate. Ozonides are a promising group of oxygen sources, as well. The generators are usually ignited by a firing pin, and the chemical reaction is usually exothermic, making the generator a potential fire hazard. Potassium superoxide was used as an oxygen source on early crewed missions of the Soviet space program, in submarines for use in emergency situations, for firefighters, and for mine rescue.

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

Calcium chlorate is the calcium salt of chloric acid, with the chemical formula Ca(ClO3)2. Like other chlorates, it is a strong oxidizer.

<span class="mw-page-title-main">Barium chlorate</span> Chemical compound

Barium chlorate, Ba(ClO3)2, is the barium salt of chloric acid. It is a white crystalline solid, and like all soluble barium compounds, irritant and toxic. It is sometimes used in pyrotechnics to produce a green color. It also finds use in the production of chloric acid.

<span class="mw-page-title-main">Potassium chlorite</span> Chemical compound

Potassium chlorite is a potassium salt of chlorous acid (HClO2) having a chemical formula KClO2. It exists as white powder and its annhydrous form easily undergoes decomposition in presence of heat or radiation (especially gamma rays).

References

  1. 1 2 3 4 5 6 7 "potassium chlorate" . Retrieved 9 July 2015.
  2. Seidell, Atherton; Linke, William F. (1952). Solubilities of Inorganic and Organic Compounds. Van Nostrand. Retrieved 2014-05-29.
  3. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN   978-0-618-94690-7.
  4. 1 2 3 "Potassium chlorate" . Retrieved 14 February 2022.
  5. Michael Chambers. "ChemIDplus - 3811-04-9 - VKJKEPKFPUWCAS-UHFFFAOYSA-M - Potassium chlorate - Similar structures search, synonyms, formulas, resource links, and other chemical information" . Retrieved 9 July 2015.
  6. 1 2 Vogt, Helmut; Balej, Jan; Bennett, John E.; Wintzer, Peter; Sheikh, Saeed Akbar; Gallone, Patrizio (June 15, 2000). "Chlorine Oxides and Chlorine Oxygen Acids". In Ullmann (ed.). Ullmann's Encyclopedia of Industrial Chemistry. Wiley‐VCH Verlag. doi:10.1002/14356007.a06_483. ISBN   9783527303854.
  7. Anne Marie Helmenstine, Ph.D. "Potassium Chlorate Synthesis (Substitute) Formula". About.com Education. Retrieved 9 July 2015.
  8. 1 2 Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN   0-07-049439-8
  9. Daniel J. Wakin and Alan Cowell (March 13, 2013). "New Round of Voting Fails to Name a Pope". The New York Times . Retrieved March 13, 2013.
  10. "Afghan bomb makers shifting to new explosives for IEDs". USAToday.com. June 25, 2013. Retrieved 2013-06-25.
  11. Manochai, P.; Sruamsiri, P.; Wiriya-alongkorn, W.; Naphrom, D.; Hegele, M.; Bangerth, F. (February 12, 2005). "Year around off-season flower induction in longan (Dimocarpus longan, Lour.) trees by KClO3 applications: potentials and problems". Scientia Horticulturae. 104 (4). Department of Horticulture, Maejo University, Chiang Mai, Thailand; Department of Horticulture, Chiang Mai University, Chiang Mai, Thailand; Institute of Special Crops and Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany: 379–390. doi:10.1016/j.scienta.2005.01.004 . Retrieved November 28, 2010.{{cite journal}}: CS1 maint: location (link)