Potassium carbonate

Last updated
Potassium carbonate
Potassium carbonate.svg
Potassium-carbonate-xtal-3D-SF.png
Potassium carbonate.jpg
Names
IUPAC name
Potassium carbonate
Other names
Carbonate of potash, dipotassium carbonate, sub-carbonate of potash, pearl ash, potash, salt of tartar, salt of wormwood.
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.008.665 OOjs UI icon edit-ltr-progressive.svg
E number E501(i) (acidity regulators, ...)
PubChem CID
RTECS number
  • TS7750000
UNII
  • InChI=1S/CH2O3.2K/c2-1(3)4;;/h(H2,2,3,4);;/q;2*+1/p-2 Yes check.svgY
    Key: BWHMMNNQKKPAPP-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/CH2O3.2K/c2-1(3)4;;/h(H2,2,3,4);;/q;2*+1/p-2
    Key: BWHMMNNQKKPAPP-NUQVWONBAS
  • C(=O)([O-])[O-].[K+].[K+]
Properties
K
2
CO
3
Molar mass 138.205 g/mol
AppearanceWhite, hygroscopic solid
Density 2.43 g/cm3
Melting point 891 °C (1,636 °F; 1,164 K)
Boiling point Decomposes
110.3 g/100mL (20 °C)
149.2 g/100mL (100 °C)
Solubility
Acidity (pKa)10.25
−59.0·10−6 cm3/mol
Thermochemistry [1]
114.4 J·mol−1·K−1
Std molar
entropy
(S298)
155.5 J·mol−1·K−1
−1151.0 kJ·mol−1
−1063.5 kJ·mol−1
Enthalpy of fusion fHfus)
27.6 kJ·mol−1
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H302, H315, H319, H335
P261, P305+P351+P338
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
1870 mg/kg (oral, rat) [2]
Safety data sheet (SDS) ICSC 1588
Related compounds
Other anions
Potassium bicarbonate
Other cations
Lithium carbonate
Sodium carbonate
Rubidium carbonate
Caesium carbonate
Related compounds
Ammonium carbonate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Potassium carbonate is the inorganic compound with the formula K2 CO3. It is a white salt, which is soluble in water and forms a strongly alkaline solution. It is deliquescent, often appearing as a damp or wet solid. Potassium carbonate is mainly used in the production of soap and glass. [3] Commonly, it can be found as the result of leakage of alkaline batteries. [4]

Contents

History

Potassium carbonate is the primary component of potash and the more refined pearl ash or salts of tartar. Historically, pearl ash was created by baking potash in a kiln to remove impurities. The fine, white powder remaining was the pearl ash. The first patent issued by the US Patent Office was awarded to Samuel Hopkins in 1790 for an improved method of making potash and pearl ash. [5]

In late 18th-century North America, before the development of baking powder, pearl ash was used as a leavening agent for quick breads. [6] [7]

Production

The modern commercial production of potassium carbonate is by reaction of potassium hydroxide with carbon dioxide: [3]

2 KOH + CO2 → K2CO3 + H2O

From the solution crystallizes the sesquihydrate K2CO3·32H2O ("potash hydrate"). Heating this solid above 200 °C (392 °F) gives the anhydrous salt. In an alternative method, potassium chloride is treated with carbon dioxide in the presence of an organic amine to give potassium bicarbonate, which is then calcined:

2 KHCO3 → K2CO3 + H2O + CO2

Applications

Related Research Articles

<span class="mw-page-title-main">Ash</span> Waste product of fires

Ash or ashes are the solid remnants of fires. Specifically, ash refers to all non-aqueous, non-gaseous residues that remain after something burns. In analytical chemistry, to analyse the mineral and metal content of chemical samples, ash is the non-gaseous, non-liquid residue after complete combustion.

<span class="mw-page-title-main">Bicarbonate</span> Polyatomic anion

In inorganic chemistry, bicarbonate is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula HCO
3
.

<span class="mw-page-title-main">Carbonate</span> Salt or ester of carbonic acid

A carbonate is a salt of carbonic acid, H2CO3, characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO2−3. The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate groupO=C(−O−)2.

<span class="mw-page-title-main">Potash</span> Salt mixture

Potash includes various mined and manufactured salts that contain potassium in water-soluble form. The name derives from pot ash, plant ashes or wood ash soaked in water in a pot, the primary means of manufacturing potash before the Industrial Era. The word potassium is derived from potash.

<span class="mw-page-title-main">Sodium bicarbonate</span> Chemical compound

Sodium bicarbonate (IUPAC name: sodium hydrogencarbonate), commonly known as baking soda or bicarbonate of soda, is a chemical compound with the formula NaHCO3. It is a salt composed of a sodium cation (Na+) and a bicarbonate anion (HCO3). Sodium bicarbonate is a white solid that is crystalline but often appears as a fine powder. It has a slightly salty, alkaline taste resembling that of washing soda (sodium carbonate). The natural mineral form is nahcolite, although it is more commonly found as a component of the mineral trona.

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the Chlor-alkali process.

<span class="mw-page-title-main">Baking powder</span> Dry chemical leavening agent

Baking powder is a dry chemical leavening agent, a mixture of a carbonate or bicarbonate and a weak acid. The base and acid are prevented from reacting prematurely by the inclusion of a buffer such as cornstarch. Baking powder is used to increase the volume and lighten the texture of baked goods. It works by releasing carbon dioxide gas into a batter or dough through an acid–base reaction, causing bubbles in the wet mixture to expand and thus leavening the mixture. The first single-acting baking powder was developed by food manufacturer Alfred Bird in England in 1843. The first double-acting baking powder, which releases some carbon dioxide when dampened and later releases more of the gas when heated by baking, was developed by Eben Norton Horsford in the U.S. in the 1860s.

<span class="mw-page-title-main">Potassium hydroxide</span> Inorganic compound (KOH)

Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic potash.

<span class="mw-page-title-main">Potassium bicarbonate</span> Chemical compound

Potassium bicarbonate (IUPAC name: potassium hydrogencarbonate, also known as potassium acid carbonate) is the inorganic compound with the chemical formula KHCO3. It is a white solid.

<span class="mw-page-title-main">Magnesium carbonate</span> Chemical compound

Magnesium carbonate, MgCO3, is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals.

<span class="mw-page-title-main">Ammonium bicarbonate</span> Chemical compound

Ammonium bicarbonate is an inorganic compound with formula (NH4)HCO3. The compound has many names, reflecting its long history. Chemically speaking, it is the bicarbonate salt of the ammonium ion. It is a colourless solid that degrades readily to carbon dioxide, water and ammonia.

The Leblanc process was an early industrial process for making soda ash used throughout the 19th century, named after its inventor, Nicolas Leblanc. It involved two stages: making sodium sulfate from sodium chloride, followed by reacting the sodium sulfate with coal and calcium carbonate to make sodium carbonate. The process gradually became obsolete after the development of the Solvay process.

<span class="mw-page-title-main">Sodium sulfate</span> Chemical compound with formula Na2SO4

Sodium sulfate (also known as sodium sulphate or sulfate of soda) is the inorganic compound with formula Na2SO4 as well as several related hydrates. All forms are white solids that are highly soluble in water. With an annual production of 6 million tonnes, the decahydrate is a major commodity chemical product. It is mainly used as a filler in the manufacture of powdered home laundry detergents and in the Kraft process of paper pulping for making highly alkaline sulfides.

<span class="mw-page-title-main">Barium carbonate</span> Chemical compound

Barium carbonate is the inorganic compound with the formula BaCO3. Like most alkaline earth metal carbonates, it is a white salt that is poorly soluble in water. It occurs as the mineral known as witherite. In a commercial sense, it is one of the most important barium compounds.

<span class="mw-page-title-main">Ammonium carbonate</span> Chemical used as leavening agent and smelling salt

Ammonium carbonate is a chemical compound with the chemical formula [NH4]2CO3. It is an ammonium salt of carbonic acid. It is composed of ammonium cations [NH4]+ and carbonate anions CO2−3. Since ammonium carbonate readily degrades to gaseous ammonia and carbon dioxide upon heating, it is used as a leavening agent and also as smelling salt. It is also known as baker's ammonia and is a predecessor to the more modern leavening agents baking soda and baking powder. It is a component of what was formerly known as sal volatile and salt of hartshorn, and produces a pungent smell when baked. It comes in the form of a white powder or block, with a molar mass of 96.09 g/mol and a density of 1.50 g/cm3. It is a strong electrolyte.

<span class="mw-page-title-main">Chemical decomposition</span> Breakdown of a chemical species into two or more parts; reverse process of a synthesis reaction

Chemical decomposition, or chemical breakdown, is the process or effect of simplifying a single chemical entity into two or more fragments. Chemical decomposition is usually regarded and defined as the exact opposite of chemical synthesis. In short, the chemical reaction in which two or more products are formed from a single reactant is called a decomposition reaction.

<span class="mw-page-title-main">Potassium fluoride</span> Ionic compound (KF)

Potassium fluoride is the chemical compound with the formula KF. After hydrogen fluoride, KF is the primary source of the fluoride ion for applications in manufacturing and in chemistry. It is an alkali halide salt and occurs naturally as the rare mineral carobbiite. Solutions of KF will etch glass due to the formation of soluble fluorosilicates, although HF is more effective.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide. The parent compound where R is hydrogen, is diazenylium.

<span class="mw-page-title-main">Condensed aerosol fire suppression</span> Particle-based form of fire extinction

Condensed aerosol fire suppression is a particle-based method of fire extinction. It is similar to but not identical to dry chemical fire extinction methods, using an innovative pyrogenic, condensed aerosol fire suppressant. It is a highly effective fire suppression method for class A, B, C, E and F. Some aerosol-generating compounds produce a corrosive by-product that may damage electronic equipment, although later generations lower the effect.

References

  1. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN   978-1-4987-5428-6. OCLC   930681942.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  2. Chambers, Michael. "ChemIDplus - 584-08-7 - BWHMMNNQKKPAPP-UHFFFAOYSA-L - Potassium carbonate [USP] - Similar structures search, synonyms, formulas, resource links, and other chemical information". chem.sis.nlm.nih.gov. Archived from the original on 2014-08-12.
  3. 1 2 H. Schultz; G. Bauer; E. Schachl; F. Hagedorn; P. Schmittinger (2005). "Potassium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_039. ISBN   3-527-30673-0.
  4. List, Jenny (October 19, 2022). "Crusty Leaking Cells Kill Your Tech. Just What's Going On?". Hackaday. Archived from the original on May 30, 2023.
  5. "Milestones in U.S. patenting". www.uspto.gov. Retrieved 2023-08-04.
  6. See references to "pearl ash" in "American Cookery" by Amelia Simmons, printed by Hudson & Goodwin, Hartford, 1796.
  7. Civitello, Linda (2017). Baking powder wars: the cutthroat food fight that revolutionized cooking. Urbana, Illinois: University of Illinois Press. pp. 18–22. ISBN   978-0-252-04108-2.
  8. Leonard, J.; Lygo, B.; Procter, G. "Advanced Practical Organic Chemistry" 1998, Stanley Thomas Publishers Ltd
  9. Child, Lydia M. "The American Frugal Housewife" 1832

Bibliography