Flux (metallurgy)

Last updated
Rosin used as flux for soldering Kolophonium Loeten.jpg
Rosin used as flux for soldering
A flux pen used for electronics rework Flux Pen.jpg
A flux pen used for electronics rework
Multicore solder containing flux Multicore Solder 2.jpg
Multicore solder containing flux
Wire freshly coated with solder, held above molten rosin flux Soldering-step2c.jpg
Wire freshly coated with solder, held above molten rosin flux

In metallurgy, a flux is a chemical reducing agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

Contents

Some of the earliest known fluxes were sodium carbonate, potash, charcoal, coke, borax, [1] lime, [2] lead sulfide [3] and certain minerals containing phosphorus. Iron ore was also used as a flux in the smelting of copper. These agents served various functions, the simplest being a reducing agent, which prevented oxides from forming on the surface of the molten metal, while others absorbed impurities into slag, which could be scraped off molten metal. [4]

Fluxes are also used in foundries for removing impurities from molten nonferrous metals such as aluminium, or for adding desirable trace elements such as titanium.

As reducing agents, fluxes facilitate soldering, brazing, and welding by removing oxidation from the metals to be joined. In some applications molten flux also serves as a heat-transfer medium, facilitating heating of the joint by the soldering tool.

Uses

Metal joining

In high-temperature metal joining processes (welding, brazing and soldering), fluxes are nearly inert at room temperature, but become strongly reducing at elevated temperatures, preventing oxidation of the base and filler materials. The role of flux is typically dual: dissolving the oxides already present on the metal surface to facilitate wetting by molten metal, and acting as an oxygen barrier by coating the hot surface, preventing oxidation.

For example, tin-lead solder [5] attaches very well to copper metal, but poorly to its oxides, which form quickly at soldering temperatures. By preventing the formation of metal oxides, flux enables the solder to adhere to the clean metal surface, rather than forming beads, as it would on an oxidized surface.

Soldering

In soldering metals, flux serves a threefold purpose: it removes any oxidized metal from the surfaces to be soldered, seals out air thus preventing further oxidation, and improves the wetting characteristics of the liquid solder. [6] Some fluxes are corrosive, so the parts have to be cleaned with a damp sponge or other absorbent material after soldering to prevent damage. Several types of flux are used in electronics. [7]

A number of standards exist to define the various flux types. The principal standard is J-STD-004.

Various tests, including the ROSE test, may be used after soldering to check for the presence of ionic or other contaminants that could cause short circuits or other problems.

Brazing and silver soldering

Brazing (sometimes known as silver soldering or hard soldering) requires a higher temperature than soft soldering (> 450 °C). As well as removing existing oxides, rapid oxidation of the metal at the elevated temperatures has to be avoided. This means that fluxes need to be more aggressive and to provide a physical barrier. [8] Traditionally borax was used as a flux for brazing, but there are now many different fluxes available, often using active chemicals such as fluorides [9] as well as wetting agents. Many of these chemicals are toxic and due care should be taken during their use.

Smelting

In the process of smelting, inorganic chlorides, fluorides (see fluorite), limestone and other materials are designated as "fluxes" when added to the contents of a smelting furnace or a cupola for the purpose of purging the metal of chemical impurities such as phosphorus, and of rendering slag more liquid at the smelting temperature. Slag is a liquid mixture of ash, flux, and other impurities. This reduction of slag viscosity with temperature, increasing the flow of slag in smelting, is the origin of the word flux in metallurgy.

The flux most commonly used in iron and steel furnaces is limestone, which is charged in the proper proportions with the iron and fuel.

Drawbacks

Fluxes have several serious drawbacks:

In special cases the drawbacks are sufficiently serious to warrant using fluxless techniques.

Dangers

Acid flux types (not used in electronics) may contain hydrochloric acid, zinc chloride or ammonium chloride, which are harmful to humans. Therefore, flux should be handled with gloves and goggles, and used with adequate ventilation.

Prolonged exposure to rosin fumes released during soldering can cause occupational asthma (formerly called colophony disease [11] in this context) in sensitive individuals, although it is not known which component of the fumes causes the problem. [12]

While molten solder has low tendency to adhere to organic materials, molten fluxes, especially of the resin/rosin type, adhere well to fingers. A mass of hot sticky flux can transfer more heat to skin and cause more serious burns than a comparable particle of non-adhering molten metal, which can be quickly shaken off. In this regard, molten flux is similar to molten hot glue.

Fluxless techniques

In some cases the presence of flux is undesirable; flux traces interfere with e.g. precision optics or MEMS assemblies. Flux residues also tend to outgas in vacuum and space applications, and traces of water, ions and organic compounds may adversely affect long-term reliability of non-hermetic packages. Trapped flux residues are also the cause of most voids in the joints. Flux-less techniques are therefore desirable there. [13]

For successful soldering and brazing, the oxide layer has to be removed from both the surfaces of the materials and the surface of the filler metal preform; the exposed surfaces also have to be protected against oxidation during heating. Flux-coated preforms can also be used to eliminate flux residue entirely from the soldering process. [14]

Protection of the surfaces against further oxidation is relatively simple, by using vacuum or inert atmosphere. Removal of the native oxide layer is more troublesome; physical or chemical cleaning methods have to be employed and the surfaces can be protected by e.g. gold plating. The gold layer has to be sufficiently thick and non-porous to provide protection for reasonable storage time. Thick gold metallization also limits choice of soldering alloys, as tin-based solders dissolve gold and form brittle intermetallics, embrittling the joint. Thicker gold coatings are usually limited to use with indium-based solders and solders with high gold content.[ citation needed ]

Removal of the oxides from the solder preform is also troublesome. Fortunately some alloys are able to dissolve the surface oxides in their bulk when superheated by several degrees above their melting point; the Sn-Cu1 and Sn-Ag4 require superheating by 18–19 °C, the Sn-Sb5 requires as little as 10 °C, but the Sn-Pb37 alloy requires 77 °C above its melting point to dissolve its surface oxide.[ citation needed ] The self-dissolved oxide degrades the solder's properties and increases its viscosity in molten state, however, so this approach is not optimal.

Solder preforms are preferred to be with high volume-to-surface ratio, as that limits the amount of oxide being formed. Pastes have to contain smooth spherical particles, preforms are ideally made of round wire. Problems with preforms can be also sidestepped by depositing the solder alloy directly on the surfaces of the parts or substrates, by chemical or electrochemical means for example.[ citation needed ]

A protective atmosphere with chemically reducing properties can be beneficial in some cases. Molecular hydrogen can be used to reduce surface oxides of tin and indium at temperatures above 430 and 470 °C; for zinc the temperature is above 500 °C, where zinc is already becoming volatilized. (At lower temperatures the reaction speed is too slow for practical applications.) Very low partial pressures of oxygen and water vapor have to be achieved for the reaction to proceed.[ citation needed ]

Other reactive atmospheres are also in use. Vapors of formic acid and acetic acid are the most commonly used. Carbon monoxide and halogen gases (for example carbon tetrafluoride, sulfur hexafluoride, or dichlorodifluoromethane) require fairly high temperatures for several minutes to be effective.[ citation needed ]

Atomic hydrogen is much more reactive than molecular hydrogen. In contact with surface oxides it forms hydroxides, water, or hydrogenated complexes, which are volatile at soldering temperatures. A practical dissociation method is an electrical discharge. Argon-hydrogen gas compositions with hydrogen concentration below the low flammable limit can be used, eliminating the safety issues. The operation has to be performed at low pressure, as the stability of atomic hydrogen at atmospheric pressure is insufficient. Such hydrogen plasma can be used for fluxless reflow soldering.[ citation needed ]

Active atmospheres are relatively common in furnace brazing; due to the high process temperatures the reactions are reasonably fast. The active ingredients are usually carbon monoxide (possibly in the form of combusted fuel gas) and hydrogen. Thermal dissociation of ammonia yields an inexpensive mixture of hydrogen and nitrogen.[ citation needed ]

Bombardment with atomic particle beams can remove surface layers at a rate of tens of nanometers per minute. The addition of hydrogen to the plasma[ which? ] augments the removal efficiency by chemical mechanisms.[ citation needed ]

Mechanical agitation is another possibility for disrupting the oxide layer. Ultrasound can be used for assisting tinning and soldering; an ultrasonic transducer can be mounted on the soldering iron, in a solder bath, or in the wave for wave soldering. The oxide disruption and removal involves cavitation effects between the molten solder and the base metal surface. A common application of ultrasound fluxing is in tinning of passive parts (active parts do not cope well with the mechanical stresses involved); even aluminium can be tinned this way. The parts can then be soldered or brazed conventionally.[ citation needed ]

Mechanical rubbing of a heated surface with molten solder can be used for coating the surface. Both surfaces to be joined can be prepared this way, then placed together and reheated. This technique was formerly used to repair small damages on aluminium aircraft skins.[ citation needed ]

A very thin layer of zinc can be used for joining aluminium parts. The parts have to be perfectly machined, or pressed together, due to the small volume of filler metal. At high temperature applied for long time, the zinc diffuses away from the joint. The resulting joint does not present a mechanical weakness and is corrosion-resistant. The technique is known as diffusion soldering. [15]

Fluxless brazing of copper alloys can be done with self-fluxing filler metals. Such metals contain an element capable of reaction with oxygen, usually phosphorus. A good example is the family of copper-phosphorus alloys.[ citation needed ]

Properties

Fluxes have several important properties:

Composition

Fluxes for metal joining

The composition of fluxes is tailored for the required properties - the base metals and their surface preparation (which determine the composition and thickness of surface oxides), the solder (which determines the wetting properties and the soldering temperature), the corrosion resistance and ease of removal, and others.

Fluxes for soft soldering are typically of organic nature, though inorganic fluxes, usually based on halogenides or acids, are also used in non-electronics applications. Fluxes for brazing operate at significantly higher temperatures and are therefore mostly inorganic; the organic compounds tend to be of supplementary nature, e.g. to make the flux sticky at low temperature so it can be easily applied.

The surface of the tin-based solder is coated predominantly with tin oxides; even in alloys the surface layer tends to become relatively enriched by tin. Fluxes for indium and zinc based solders have different compositions than fluxes for ordinary tin-lead and tin-based solders, due to different soldering temperatures and different chemistry of the oxides involved.

Organic fluxes are unsuitable for flame soldering and flame brazing, as they tend to char and impair solder flow.

Some metals are classified as "unsolderable" in air, and have to be either coated with another metal before soldering or special fluxes or protective atmospheres have to be used. Such metals are beryllium, chromium, magnesium, titanium, and some aluminium alloys.

Fluxes for high-temperature soldering differ from the fluxes for use at lower temperatures. At higher temperatures even relatively mild chemicals have sufficient oxide-disrupting activity, but the metal oxidation rates become fairly high; the barrier function of the vehicle therefore becomes more important than the fluxing activity. High molecular weight hydrocarbons are often used for this application; a diluent with a lower molecular weight, boiling off during the preheat phase, is usually used to aid application. [16]

Common fluxes are ammonium chloride or resin acids (contained in rosin) for soldering copper and tin; hydrochloric acid and zinc chloride for soldering galvanized iron (and other zinc surfaces); and borax for brazing, braze-welding ferrous metals, and forge welding.

Organic fluxes

Organic fluxes typically consist of four major components: [17]

Inorganic fluxes

Inorganic fluxes contain components playing the same role as in organic fluxes. They are more often used in brazing and other high-temperature applications, where organic fluxes have insufficient thermal stability. The chemicals used often simultaneously act as both vehicles and activators; typical examples are borax, borates, fluoroborates, fluorides and chlorides. Halogenides are active at lower temperatures than borates, and are therefore used for brazing of aluminium and magnesium alloys; they are however highly corrosive.

Behavior of activators

The role of the activators is primarily disruption and removal of the oxide layer on the metal surface (and also the molten solder), to facilitate direct contact between the molten solder and metal. The reaction product is usually soluble or at least dispersible in the molten vehicle. The activators are usually either acids, or compounds that release acids at elevated temperature.

The general reaction of oxide removal is:

Metal oxide + Acid → Salt + Water

Salts are ionic in nature and can cause problems from metallic leaching or dendrite growth, with possible product failure. In some cases, particularly in high-reliability applications, flux residues must be removed.

The activity of the activator generally increases with temperature, up to a certain value where activity ceases, either due to thermal decomposition or excessive volatilization. However the oxidation rate of the metals also increases with temperature.

At high temperatures, copper oxide reacts with hydrogen chloride to water-soluble and mechanically weak copper chloride, and with rosin to salts of copper and abietic acid which is soluble in molten rosin.

Some activators may also contain metal ions, capable of exchange reaction with the underlying metal; such fluxes aid soldering by chemically depositing a thin layer of easier solderable metal on the exposed base metal. An example is the group of fluxes containing zinc, tin or cadmium compounds, usually chlorides, sometimes fluorides or fluoroborates.

Inorganic activators

Common high-activity activators are mineral acids, often together with halides, amines, water or alcohols:

Inorganic acids are highly corrosive to metals even at room temperature, which causes issues during storage, handling and applications. As soldering involves high temperatures, compounds that decompose or react, with acids as products, are frequently used:

Rosin fluxes

Electrical solder with a rosin core, visible as a dark spot in the cut end of the solder wire. Rosin core electrical solder.JPG
Electrical solder with a rosin core, visible as a dark spot in the cut end of the solder wire.

The terms resin flux and rosin flux are ambiguous and somewhat interchangeable, with different vendors using different assignments. Generally, fluxes are labeled as rosin if the vehicle they are based on is primarily natural rosin. Some manufactures reserve "rosin" designation for military fluxes based on rosin (R, RMA and RA compositions) and label others as "resin".

Rosin has good flux properties. A mixture of organic acids (resin acids, predominantly abietic acid, with pimaric acid, isopimaric acid, neoabietic acid, dihydroabietic acid, and dehydroabietic acid), rosin is a glassy solid, virtually nonreactive and noncorrosive at normal temperature, but liquid, ionic and mildly reactive to metal oxides at molten state. Rosin tends to soften between 60–70 °C and is fully fluid at around 120 °C; molten rosin is weakly acidic and is able to dissolve thinner layers of surface oxides from copper without further additives. For heavier surface contamination or improved process speed, additional activators can be added.

There are several possible activator groups for rosins:

There are three types of rosin: gum rosin (from pine tree oleoresin), wood rosin (obtained by extraction of tree stumps), and tall oil rosin (obtained from tall oil, a byproduct of kraft paper process). Gum rosin has a milder odor and lower tendency to crystallize from solutions than wood rosin, and is therefore preferred for flux applications. Tall oil rosin finds increased use due to its higher thermal stability and therefore lower tendency to form insoluble thermal decomposition residues. The composition and quality of rosin differs by the tree type, and also by location and even by year. In Europe, rosin for fluxes is usually obtained from a specific type of Portuguese pine; in America a North Carolina variant is used. [18]

Natural rosin can be used as is, or can be chemically modified by e.g. esterification, polymerization, or hydrogenation. The properties being altered are increased thermal stability, better cleanability, altered solution viscosity, and harder residue (or conversely, softer and more tacky residue). Rosin can be also converted to a water-soluble rosin flux, by formation of an ethoxylated rosin amine, an adduct with a polyglycol and an amine.

One of the early fluxes was a mixture of equal amounts of rosin and vaseline. A more aggressive early composition was a mixture of saturated solution of zinc chloride, alcohol, and glycerol. [19]

Fluxes can be also prepared from synthetic resins, often based on esters of polyols and fatty acids. Such resins have improved fume odor and lower residue tack, but their fluxing activity and solubility tend to be lower than that of natural resins.

Rosin flux grades

Rosin fluxes are categorized by grades of activity: L for low, M for moderate, and H for high. There are also other abbreviations for different rosin flux grades: [18] [20]

R, WW, and RMA grades are used for joints that can not be easily cleaned or where there is too high corrosion risk. More active grades require thorough cleaning of the residues. Improper cleaning can actually aggravate the corrosion by releasing trapped activators from the flux residues.

Special fluxes

Fluxes for soldering certain metals

Some materials are very difficult to solder. In some cases special fluxes have to be employed.

Aluminum and its alloys

Aluminium and its alloys are difficult to solder due to the formation of the passivation layer of aluminium oxide. The flux has to be able to disrupt this layer and facilitate wetting by solder. Salts or organic complexes of some metals can be used; the salt has to be able to penetrate the cracks in the oxide layer.[ citation needed ] The metal ions, more noble than aluminium, then undergo a redox reaction, dissolve the surface layer of aluminium and form a deposit there. This intermediate layer of another metal then can be wetted with a solder.

One example of such flux is a composition of triethanolamine, fluoroboric acid, and cadmium fluoroborate. More than 1% magnesium in the alloy impairs the flux action, however, as the magnesium oxide layer is more refractory. Another possibility is an inorganic flux composed of zinc chloride or tin(II) chloride, [21] ammonium chloride, and a fluoride (e.g. sodium fluoride). Presence of silicon in the alloy impairs the flux effectivity, as silicon does not undergo the exchange reaction aluminium does.

Magnesium alloys

Magnesium alloys. A putative flux for soldering these alloys at low temperature is molten acetamide. Acetamide dissolves surface oxides on both aluminium and magnesium; promising experiments were done with its use as a flux for a tin-indium solder on magnesium.[ citation needed ]

Stainless steel

Stainless steel is a material which is difficult to solder because of its stable, self-healing surface oxide layer and its low thermal conductivity. A solution of zinc chloride in hydrochloric acid is a common flux for stainless steels; it has however to be thoroughly removed afterwards as it would cause pitting corrosion. Another highly effective flux is phosphoric acid; its tendency to polymerize at higher temperatures however limits its applications.

Metal salts as flux in hot corrosion

Hot corrosion can affect gas turbines operating in high salt environments (e.g., near the ocean). Salts, including chlorides and sulfates, are ingested by the turbines and deposited in the hot sections of the engine; other elements present in fuels also form salts, e.g. vanadates. The heat from the engine melts these salts which then can flux the passivating oxide layers on the metal components of the engine, allowing corrosion to occur at an accelerated rate.

List of fluxes

Flux recovery

During the submerged arc welding process, not all flux turns into slag. Depending on the welding process, 50% to 90% of the flux can be reused. [23]

Standards

Solder fluxes are specified according to several standards.

ISO 9454-1 and DIN EN 29454-1

The most common standard in Europe is ISO 9454-1 (also known as DIN EN 29454-1). [24]

This standard specifies each flux by a four-character code: flux type, base, activator, and form. The form is often omitted.

Flux typeBaseActivatorForm
1 Resin
  • 1 Without activator
  • 2 Halide activator
  • 3 Non-halide activator
  • A Liquid
  • B Solid
  • C Paste
2 Organic
  • 1 Water-soluble
  • 2 Water-insoluble
3 Inorganic
  • 1 Salts
  • 2 Acids
  • 3 Alkaline

Therefore, 1.1.2 means rosin flux with halides.

DIN 8511

The older German DIN 8511 specification is still often in use in shops. In the table below, note that the correspondence between DIN 8511 and ISO 9454-1 codes is not one-to-one.

ResiduesDIN 8511ISO 9454-1Description
Strongly corrosiveF-SW-113.2.2Inorganic acid other than phosphoric
Strongly corrosiveF-SW-123.1.1Ammonium chloride
Strongly corrosiveF-SW-133.2.1Phosphoric acid
Weakly corrosiveF-SW-213.1.1Ammonium chloride
Weakly corrosiveF-SW-223.1.2Inorganic salts without ammonium chloride
Weakly corrosiveF-SW-232.1.3Organic water-soluble without halides
Weakly corrosiveF-SW-232.2.1Organic water-insoluble without activators
Weakly corrosiveF-SW-232.2.3Organic water-insoluble without halides
Weakly corrosiveF-SW-242.1.1Organic water-soluble without activators
Weakly corrosiveF-SW-242.1.3Organic water-soluble without halides
Weakly corrosiveF-SW-242.2.3Organic water-insoluble without halides
Weakly corrosiveF-SW-252.1.2Organic water-soluble with halides
Weakly corrosiveF-SW-252.2.2Organic water-insoluble with halides
Weakly corrosiveF-SW-261.1.2Rosin with halides
Weakly corrosiveF-SW-271.1.3Rosin without halides
Weakly corrosiveF-SW-281.2.2Rosin-free resin with halides
Non-corrosiveF-SW-311.1.1Rosin without activators
Non-corrosiveF-SW-321.1.3Rosin without halides
Non-corrosiveF-SW-331.2.3Rosin-free resin without halides
Non-corrosiveF-SW-342.2.3Organic water-insoluble without halides

J-STD-004

One standard increasingly used (e.g. in the United States) is J-STD-004. It is very similar to DIN EN 61190-1-1.

Four characters (two letters, then one letter, and last a number) represent flux composition, flux activity, and whether activators include halides: [25]

Any combination is possible, e.g. ROL0, REM1 or ORH0.

J-STD-004 characterizes the flux by reliability of residue from a surface insulation resistance (SIR) and electromigration standpoint. It includes tests for electromigration and surface insulation resistance (which must be greater than 100 MΩ after 168 hours at elevated temperature and humidity with a DC bias applied).

MIL-F-14256 and QQ-S-571

The old MIL-F-14256 and QQ-S-571 standards defined fluxes as:

Any of these categories may be no-clean, or not, depending on the chemistry selected and the standard that the manufacturer requires.

See also

Related Research Articles

<span class="mw-page-title-main">Solder</span> Alloy used to join metal pieces

Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable for use as solder should have a lower melting point than the pieces to be joined. The solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder used in making electrical connections also needs to have favorable electrical characteristics.

<span class="mw-page-title-main">Corrosion</span> Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion. Passivation of silicon is used during fabrication of microelectronic devices. Undesired passivation of electrodes, called "fouling", increases the circuit resistance so it interferes with some electrochemical applications such as electrocoagulation for wastewater treatment, amperometric chemical sensing, and electrochemical synthesis.

<span class="mw-page-title-main">Hot-dip galvanization</span> Process of coating iron or steel with molten zinc

Hot-dip galvanization is a form of galvanization. It is the process of coating iron and steel with zinc, which alloys with the surface of the base metal when immersing the metal in a bath of molten zinc at a temperature of around 450 °C (842 °F). When exposed to the atmosphere, the pure zinc (Zn) reacts with oxygen (O2) to form zinc oxide (ZnO), which further reacts with carbon dioxide (CO2) to form zinc carbonate (ZnCO3), a usually dull grey, fairly strong material that protects the steel underneath from further corrosion in many circumstances. Galvanized steel is widely used in applications where corrosion resistance is needed without the cost of stainless steel, and is considered superior in terms of cost and life-cycle. It can be identified by the crystallization patterning on the surface (often called a "spangle").

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Rosin</span> Solid form of resin

Rosin, also called colophony or Greek pitch, is a solid form of resin obtained from pines and some other plants, mostly conifers, produced by heating fresh liquid resin to vaporize the volatile liquid terpene components. It is semi-transparent and varies in color from yellow to black. At room temperature rosin is brittle, but it melts at stove-top temperature. It chiefly consists of various resin acids, especially abietic acid. The term colophony comes from colophonia resina, Latin for "resin from Colophon", an ancient Ionic city. It is an FDA approved food additive.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is an inorganic chemical compound with the formula ZnCl2·nH2O, with n ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates, are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. All forms of zinc chloride are deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. In a major monograph, zinc chlorides have been described as "one of the important compounds of zinc."

<span class="mw-page-title-main">Anodizing</span> Metal treatment process

Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.

<span class="mw-page-title-main">Wave soldering</span> Electronics soldering process

Wave soldering is a bulk soldering process used for the manufacturing of printed circuit boards. The circuit board is passed over a pan of molten solder in which a pump produces an upwelling of solder that looks like a standing wave. As the circuit board makes contact with this wave, the components become soldered to the board. Wave soldering is used for both through-hole printed circuit assemblies, and surface mount. In the latter case, the components are glued onto the surface of a printed circuit board (PCB) by placement equipment, before being run through the molten solder wave. Wave soldering is mainly used in soldering of through hole components.

Plating is a finishing process in which a metal is deposited on a surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

The solderability of a substrate is a measure of the ease with which a soldered joint can be made to that material. Good solderability requires wetting of the substrate by the solder.

Boron trichloride is the inorganic compound with the formula BCl3. This colorless gas is a reagent in organic synthesis. It is highly reactive towards water.

<span class="mw-page-title-main">Electroless nickel-phosphorus plating</span> Chemical-induced nickel coating of a surface

Electroless nickel-phosphorus plating, also referred to as E-nickel, is a chemical process that deposits an even layer of nickel-phosphorus alloy on the surface of a solid substrate, like metal or plastic. The process involves dipping the substrate in a water solution containing nickel salt and a phosphorus-containing reducing agent, usually a hypophosphite salt. It is the most common version of electroless nickel plating and is often referred by that name. A similar process uses a borohydride reducing agent, yielding a nickel-boron coating instead.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

<span class="mw-page-title-main">Dip soldering</span> Solder by immersion in a bath of molten solder

Dip soldering is a small-scale soldering process by which electronic components are soldered to a printed circuit board (PCB) to form an electronic assembly. The solder wets to the exposed metallic areas of the board, creating a reliable mechanical and electrical connection.

<span class="mw-page-title-main">Soldering</span> Process of joining metal pieces with heated filler metal

Soldering is a process of joining two metal surfaces together using a filler metal called solder. The soldering process involves heating the surfaces to be joined and melting the solder, which is then allowed to cool and solidify, creating a strong and durable joint.

<span class="mw-page-title-main">Failure of electronic components</span> Ways electronic components fail and prevention measures

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.

<span class="mw-page-title-main">Materials for use in vacuum</span>

Materials for use in vacuum are materials that show very low rates of outgassing in vacuum and, where applicable, are tolerant to bake-out temperatures. The requirements grow increasingly stringent with the desired degree of vacuum to be achieved in the vacuum chamber. The materials can produce gas by several mechanisms. Molecules of gases and water can be adsorbed on the material surface. Materials may sublimate in vacuum. Or the gases can be released from porous materials or from cracks and crevices. Traces of lubricants, residues from machining, can be present on the surfaces. A specific risk is outgassing of solvents absorbed in plastics after cleaning.

<span class="mw-page-title-main">Aluminium joining</span>

Aluminium alloys are often used due to their high strength-to-weight ratio, corrosion resistance, low cost, high thermal and electrical conductivity. There are a variety of techniques to join aluminium including mechanical fasteners, welding, adhesive bonding, brazing, soldering and friction stir welding (FSW), etc. Various techniques are used based on the cost and strength required for the joint. In addition, process combinations can be performed to provide means for difficult-to-join assemblies and to reduce certain process limitations.

References

  1. "The use of ... borax ... traced back to the ancient Egyptians, who used it as a metallurgical flux". Britannica.com. Archived from the original on 2012-01-14. Retrieved 2011-08-19.
  2. Bhardwaj, Hari C. (1979). Aspects of Ancient Indian Technology (use of lime as a flux). Motilal Banarsidass. ISBN   81-208-3040-7. Archived from the original on 2017-11-03. Retrieved 2011-08-19.
  3. "Metallurgy in southern South America, Smelting, p. 1659-60" (PDF). Archived from the original (PDF) on October 10, 2010. Retrieved 2011-08-19.
  4. "What Is Solder Flux And How Do You Use It?". www.pcbgogo.com. Retrieved 2021-07-09.
  5. "What is Solder and its Types". bestsolderingirons. 2019-12-18. Retrieved 2021-08-05.
  6. "How to Use Flux When Soldering Electronics For Beginners". Solderingironguide. 2019-12-18. Retrieved 2021-07-09.
  7. "Why use flux when soldering?". Engineering and Component Solution Forum - TechForum │ Digi-Key. 2019-07-03. Retrieved 2021-07-09.
  8. "Society of American Silversmiths". Silversmithing.com. Archived from the original on 2010-12-01. Retrieved 2010-03-02.
  9. "FAQ on fluorides in flux". Fluoridefreeflux.com. Archived from the original on 2011-07-20. Retrieved 2011-08-19.
  10. Shangguan, Dongkai (2005). Lead-free solder interconnect ... - Google Books. ASM International. ISBN   9781615030934. Archived from the original on 2013-06-20. Retrieved 2011-08-19.
  11. ""colophony disease", Archaic Medical Terms List, Occupational, on Antiquus Morbus website". Antiquusmorbus.com. 2011-07-29. Archived from the original on 2011-09-03. Retrieved 2011-08-19.
  12. Controlling health risks from rosin (colophony) based solder fluxes, IND(G)249L, United Kingdom Health and Safety Executive, 1997 (online PDF) Archived 2011-01-12 at the Wayback Machine
  13. Humpston, Giles; Jacobson, David M. (2004). Principles of soldering - Google Books. ASM International. ISBN   9781615031702. Archived from the original on 2013-06-20. Retrieved 2011-08-19.
  14. "Flux-Coated Solder Preforms". Indium.com. 2011-08-15. Archived from the original on 2011-07-19. Retrieved 2011-08-19.
  15. Humpston, G; Jacobson, D. M; Sangha, S. P. S (1994-01-01). "Diffusion soldering for electronics manufacturing". Endeavour. 18 (2): 55–60. doi:10.1016/0160-9327(94)90063-9. ISSN   0160-9327.
  16. Humpston, Giles; Jacobson, David M. (2004). Principles of soldering - Google Books. ASM International. ISBN   9781615031702. Archived from the original on 2013-06-20. Retrieved 2011-08-19.
  17. Electronic Materials Handbook: Packaging - Google Books. ASM International. November 1989. ISBN   9780871702852. Archived from the original on 2013-06-20. Retrieved 2011-08-19.
  18. 1 2 Lau, John H. (31 May 1991). Solder joint reliability: theory and ... - Google Books. Springer. ISBN   9780442002602. Archived from the original on 2013-06-20. Retrieved 2011-08-19.
  19. Popular Mechanics. Hearst Magazines. May 1926. Archived from the original on 2013-06-20. Retrieved 2011-08-19.
  20. Judd, Mike; Brindley, Keith (1999-03-31). Soldering in electronics assembly. Elsevier Science. ISBN   9780750635455. Archived from the original on 2013-06-20. Retrieved 2011-08-19.
  21. US Patent 3988175, Soldering flux and method . Baker, James C.; Bauer, Robert E.
  22. "An Investigation of the Chemistry of Citric Acid in Military Soldering Applications" (PDF). 1995-06-19. Archived (PDF) from the original on March 15, 2020.
  23. "Resources Recovered Calculator". Weld Engineering Co. Archived from the original on 15 May 2015. Retrieved 5 March 2015.
  24. "Din en 29454-1:1994-02". Archived from the original on 2016-02-06. Retrieved 2016-02-06.
  25. "Archived copy" (PDF). Archived (PDF) from the original on 2013-11-06. Retrieved 2013-10-14.{{cite web}}: CS1 maint: archived copy as title (link)