Ethoxylation

Last updated

In organic chemistry, ethoxylation is a chemical reaction in which ethylene oxide (C2H4O) adds to a substrate. It is the most widely practiced alkoxylation, which involves the addition of epoxides to substrates.

Contents

In the usual application, alcohols and phenols are converted into R(OC2H4)nOH, where n ranges from 1 to 10. Such compounds are called alcohol ethoxylates. Alcohol ethoxylates are often converted to related species called ethoxysulfates. Alcohol ethoxylates and ethoxysulfates are surfactants, used widely in cosmetic and other commercial products. [1] The process is of great industrial significance, with more than 2,000,000 metric tons of various ethoxylates produced worldwide in 1994. [2]

Production

The process was developed at the Ludwigshafen laboratories of IG Farben by Conrad Schöller and Max Wittwer  [ de ] during the 1930s. [3] [4]

Alcohol ethoxylates

Industrial ethoxylation is primarily performed upon alcohols. Lower alcohols react to give glycol ethers which are commonly used as solvents, while longer fatty alcohols are converted to fatty alcohol ethoxylates (FAE's), which are a common form of nonionic surfactant. The reaction typically proceeds by blowing ethylene oxide through the alcohol at 180 °C and under 1-2 bar of pressure, with potassium hydroxide (KOH) serving as a catalyst. [5] The process is highly exothermic (ΔH  = -92 kJ/mol of ethylene oxide reacted) and requires careful control to avoid a potentially disastrous thermal runaway. [5]

The starting materials are usually primary alcohols as they tend to react 10–30× faster than do secondary alcohols. [6] Typically 5-10 units of ethylene oxide are added to each alcohol, [7] however ethoxylated alcohols can be more prone to ethoxylation than the starting alcohol, making the reaction difficult to control and leading to the formation of a product with varying repeat unit length (the value of n in the equation above). Better control can be afforded by the use of more sophisticated catalysts, [8] which can be used to generate narrow-range ethoxylates. Ethoxylated alcohols are considered to be a high production volume (HPV) chemical by the US EPA. [9]

Ethoxylation/propoxylation

Ethoxylation is sometimes combined with propoxylation, the analogous reaction using propylene oxide as the monomer. Both reactions are normally performed in the same reactor and may be run simultaneously to give a random polymer, or in alternation to obtain block copolymers such as poloxamers. [5] Propylene oxide is more hydrophobic than ethylene oxide and its inclusion at low levels can significantly affect the properties of the surfactant. In particular ethoxylated fatty alcohols which have been 'capped' with ~1 propylene oxide unit are extensively marketed as defoamers.

Ethoxysulfates

Ethoxylated fatty alcohols are often converted to the corresponding organosulfates, which can be easily deprotonated to give anionic surfactants such as sodium laureth sulfate. Being salts, ethoxysulfates exhibit good water solubility (high HLB value). The conversion is achieved by treating ethoxylated alcohols with sulfur trioxide. [10] Laboratory scale synthesis may be performed using chlorosulfuric acid:

The resulting sulfate esters are neutralized to give the salt:

Small volumes are neutralized with alkanolamines such as triethanolamine (TEA). [11] [ page needed ]

In 2008, 381,000 metric tons of alcohol ethoxysulfates were consumed in North America. [12]

Other materials

Although alcohols are by far the major substrate for ethoxylation, many nucleophiles are reactive toward ethylene oxide. Primary amines will react to give di-chain materials such as polyethoxylated tallow amine. The reaction of ammonia produces important bulk chemicals such as ethanolamine, diethanolamine, and triethanolamine.

Applications of ethoxylated products

Alcohol ethoxylates (AE) and alcohol ethoxysulfates (AES) are surfactants found in products such as laundry detergents, surface cleaners, cosmetics, agricultural products, textiles, and paint. [13] [ non-primary source needed ]

Alcohol ethoxylates

As alcohol ethoxylate based surfactants are non-ionic they typically require longer ethoxylate chains than their sulfonated analogues in order to be water-soluble. [14] Examples synthesized on an industrial scale include octyl phenol ethoxylate, polysorbate 80 and poloxamers. Ethoxylation is commonly practiced, albeit on a much smaller scale, in the biotechnology and pharmaceutical industries to increase water solubility and, in the case of pharmaceuticals, circulatory half-life of non-polar organic compounds. In this application, ethoxylation is known as "PEGylation" (polyethylene oxide is synonymous with polyethylene glycol, abbreviated as PEG). Carbon chain length is 8-18 while the ethoxylated chain is usually 3 to 12 ethylene oxides long in home products. [15] [ page needed ] They feature both lipophilic tails, indicated by the alkyl group abbreviation, R, and relatively polar headgroups, represented by the formula (OC2H4)nOH.

Alcohol ethoxysulfates

AES found in consumer products generally are linear alcohols, which could be mixtures of entirely linear alkyl chains or of both linear and mono-branched alkyl chains. [16] [ page needed ] A high-volume example of these is sodium laureth sulfate a foaming agent in shampoos and liquid soaps, as well as industrial detergents.[ citation needed ]

Environmental and safety

Alcohol ethoxylates (AEs)

Human health

Alcohol ethoxylates are not observed to be mutagenic, carcinogenic, or skin sensitizers, nor cause reproductive or developmental effects. [17] One byproduct of ethoxylation is 1,4-dioxane, a possible human carcinogen. [18] Undiluted AEs can cause dermal or eye irritation. In aqueous solution, the level of irritation is dependent on the concentration. AEs are considered to have low to moderate toxicity for acute oral exposure, low acute dermal toxicity, and have mild irritation potential for skin and eyes at concentrations found in consumer products. [15] Recent studies have found dried AE residues similar to what would be found on restaurant dishes (as effective concentrations from 1:10,000 to 1:40,000) killed epithelial intestinal cells at high concentrations. Lower concentrations made cells more permeable and prone to inflammatory response .

Aquatic and environmental aspects

AEs are usually released down the drain, where they may be adsorbed into solids and biodegrade through anaerobic processes, with ~28–58% degraded in the sewer. [19] [ non-primary source needed ] The remaining AEs are treated at waste water treatment plants and biodegraded via aerobic processes with less than 0.8% of AEs released in effluent. [19] If released into surface waters, sediment or soil, AEs will degrade through aerobic and anaerobic processes or be taken up by plants and animals.

Toxicity to certain invertebrates has a range of EC50 values for linear AE from 0.1 mg/L to greater than 100 mg/L. For branched alcohol exthoxylates, toxicity ranges from 0.5 mg/L to 50 mg/L. [15] The EC50 toxicity for algae from linear and branched AEs was 0.05 mg/L to 50 mg/L. Acute toxicity to fish ranges from LC50 values for linear AE of 0.4 mg/L to 100 mg/L, and branched is 0.25 mg/L to 40 mg/L. For invertebrates, algae and fish the essentially linear and branched AEs are considered to not have greater toxicity than Linear AE. [15]

Alcohol ethoxysulfates (AESs)

Biodegradation

The degradation of AES proceeds by ω- or β-oxidation of the alkyl chain, enzymatic hydrolysis of the sulfate ester, and by cleavage of an ether bond in the AES producing alcohol or alcohol ethoxylate and an ethylene glycol sulfate. Studies of aerobic processes also found AES to be readily biodegradable. [11] The half-life of both AE and AES in surface water is estimated to be less than 12 hours. [20] [ non-primary source needed ] The removal of AES due to degradation via anaerobic processes is estimated to be between 75 and 87%.

In water

Flow-through laboratory tests in a terminal pool of AES with mollusks found the NOEC of a snail, Goniobasis and the Asian clam, Corbicula to be greater than 730 ug/L. Corbicula growth was measured to be affected at a concentration of 75 ug/L. [21] [ non-primary source needed ] The mayfly, genus Tricorythodes has a normalized density NOEC value of 190 ug/L. [22] [ non-primary source needed ]

Human safety

AES has not been found to be genotoxic, mutagenic, or carcinogenic. [16] A 2022 study revealed the expression of genes involved in cell survival, epithelial barrier, cytokine signaling, and metabolism were altered by rinse aid in concentrations used in professional dishwashers. The alcohol ethoxylates present in the rinse aid were identified as the culprit component causing the epithelial inflammation and barrier damage. [23]

Related Research Articles

<span class="mw-page-title-main">Alcohol (chemistry)</span> Organic compound with at least one hydroxyl (–OH) group

In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group bound to a saturated carbon atom. Alcohols range from the simple, like methanol and ethanol, to complex, like sucrose and cholesterol. The presence of an OH group strongly modifies the properties of hydrocarbons, conferring hydrophilic (water-loving) properties. The OH group provides a site at which many reactions can occur.

Sodium laureth sulfate (SLES), an accepted contraction of sodium lauryl ether sulfate (SLES), also called sodium alkylethersulfate, is an anionic detergent and surfactant found in many personal care products and for industrial uses. SLES is an inexpensive and very effective foaming agent. SLES, sodium lauryl sulfate (SLS), ammonium lauryl sulfate (ALS), and sodium pareth sulfate are surfactants that are used in many cosmetic products for their cleaning and emulsifying properties. It is derived from palm kernel oil or coconut oil. In herbicides, it is used as a surfactant to improve absorption of the herbicidal chemicals and reduces time the product takes to be rainfast, when enough of the herbicidal agent will be absorbed.

<span class="mw-page-title-main">Detergent</span> Surfactants with cleansing properties

A detergent is a surfactant or a mixture of surfactants with cleansing properties when in dilute solutions. There are a large variety of detergents, a common family being the alkylbenzene sulfonates, which are soap-like compounds that are more soluble in hard water, because the polar sulfonate is less likely than the polar carboxylate to bind to calcium and other ions found in hard water.

<span class="mw-page-title-main">Surfactant</span> Substance that lowers the surface tension between a liquid and another material

Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. Surfactants may function as emulsifiers, wetting agents, detergents, foaming agents, or dispersants. The word "surfactant" is a blend of surface-active agent, coined c. 1950.

<span class="mw-page-title-main">Ethylene oxide</span> Cyclic compound (C2H4O)

Ethylene oxide is an organic compound with the formula C2H4O. It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of a silver catalyst.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

Ammonium lauryl sulfate (ALS) is the common name for ammonium dodecyl sulfate (CH3(CH2)10CH2OSO3NH4). The anion consists of a nonpolar hydrocarbon chain and a polar sulfate end group. The combination of nonpolar and polar groups confers surfactant properties to the anion: it facilitates dissolution of both polar and non-polar materials. This salt is classified as a sulfate ester. It is primarily used in shampoos and body-wash as a foaming agent. Lauryl sulfates are very high-foam surfactants that disrupt the surface tension of water in part by forming micelles at the surface-air interface.

<span class="mw-page-title-main">Quaternary ammonium cation</span> Polyatomic ions of the form N(–R)₄ (charge +1)

In organic chemistry, quaternary ammonium cations, also known as quats, are positively-charged polyatomic ions of the structure [NR4]+, where R is an alkyl group, an aryl group or organyl group. Unlike the ammonium ion and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds are salts of quaternary ammonium cations. Polyquats are a variety of engineered polymer forms which provide multiple quat molecules within a larger molecule.

<span class="mw-page-title-main">Laundry detergent</span> Type of detergent used for cleaning laundry

Laundry detergent is a type of detergent used for cleaning dirty laundry (clothes). Laundry detergent is manufactured in powder and liquid form.

<span class="mw-page-title-main">Straight-chain terminal alkene</span>

Straight-chain terminal alkenes, also called linear alpha olefins (LAO) or normal alpha olefins (NAO), are alkenes (olefins) having a chemical formula CnH2n, distinguished from other alkenes with a similar molecular formula by being terminal alkenes, in which the double bond occurs at the alpha position, and by having a linear (unbranched) hydrocarbon chain.

Sodium myreth sulfate is a mixture of organic compounds with both detergent and surfactant properties. It is found in many personal care products such as soaps, shampoos, and toothpaste. It is an inexpensive and effective foaming agent. Typical of many detergents, sodium myreth sulfate consists of several closely related compounds. Sometimes the number of ethylene glycol ether units (n) is specified in the name as myreth-n sulfate, for example myreth-2 sulfate.

<span class="mw-page-title-main">Amphiphile</span> Hydrophilic and lipophilic chemical compound

An amphiphile, or amphipath, is a chemical compound possessing both hydrophilic and lipophilic (fat-loving) properties. Such a compound is called amphiphilic or amphipathic. Amphiphilic compounds include surfactants. The phospholipid amphiphiles are the major structural component of cell membranes.

<span class="mw-page-title-main">Amine oxide</span> Chemical compound containing the functional group R3N→O

In chemistry, an amine oxide, also known as an amine N-oxide or simply N-oxide, is a chemical compound that contains the functional group R3N+−O, a nitrogen-oxygen coordinate covalent bond with three additional hydrogen and/or substituent-group side chains attached to N. Sometimes it is written as R3N→O or, alternatively, as R3N=O.

<span class="mw-page-title-main">Triton X-100</span> Chemical compound

Triton X-100 is a nonionic surfactant that has a hydrophilic polyethylene oxide chain and an aromatic hydrocarbon lipophilic or hydrophobic group. The hydrocarbon group is a 4-(1,1,3,3-tetramethylbutyl)-phenyl group. Triton X-100 is closely related to IGEPAL CA-630, which might differ from it mainly in having slightly shorter ethylene oxide chains. As a result, Triton X-100 is slightly more hydrophilic than Igepal CA-630 thus these two detergents may not be considered to be functionally interchangeable for most applications.

<span class="mw-page-title-main">Organosulfate</span> Organic compounds of the form R–O–SO₃ (charge –1)

In organosulfur chemistry, organosulfates are a class of organic compounds sharing a common functional group with the structure R−O−SO−3. The SO4 core is a sulfate group and the R group is any organic residue. All organosulfates are formally esters derived from alcohols and sulfuric acid although many are not prepared in this way. Many sulfate esters are used in detergents, and some are useful reagents. Alkyl sulfates consist of a hydrophobic hydrocarbon chain, a polar sulfate group and either a cation or amine to neutralize the sulfate group. Examples include: sodium lauryl sulfate and related potassium and ammonium salts.

Narrow-range ethoxylates (NREs) in chemistry are fatty alcohol polyglycol ethers with a narrow homolog distribution and are known nonionic surfactants. They can be produced industrially, for example, by the addition of ethylene oxide onto fatty alcohols in the presence of suitable catalysts. This process can also be carried out on a variety of other hydrophobes and using different alkoxylating compounds by modifying the catalyst properties.

<span class="mw-page-title-main">Alkylbenzene sulfonate</span> Class of chemical compounds

Alkylbenzene sulfonates are a class of anionic surfactants, consisting of a hydrophilic sulfonate head-group and a hydrophobic alkylbenzene tail-group. Along with sodium laureth sulfate, they are one of the oldest and most widely used synthetic detergents and may be found in numerous personal-care products and household-care products . They were introduced in the 1930s in the form of branched alkylbenzene sulfonates (BAS). However following environmental concerns these were replaced with linear alkylbenzene sulfonates (LAS) during the 1960s. Since then production has increased significantly from about one million tons in 1980, to around 3.5 million tons in 2016, making them most produced anionic surfactant after soaps.

Wastewater comes out of the laundry process with additional energy (heat), lint, soil, dyes, finishing agents, and other chemicals from detergents. Some laundry wastewater goes directly into the environment, due to the flaws of water infrastructure. The majority goes to sewage treatment plants before flowing into the environment. Some chemicals remain in the water after treatment, which may contaminate the water system. Some have argued they can be toxic to wildlife, or can lead to eutrophication.

<span class="mw-page-title-main">1-Pentadecanol</span> 15-carbon alcohol

1-Pentadecanol is an organic chemical compound classified as an alcohol. At room temperature, it is a white, flaky solid. It is a saturated long-chain fatty alcohol consisting of a pentadecane chain with a hydroxy group as substituent on one end. It is an achiral molecule.

References

  1. Smulders, E.; von Rybinski, W.; Sung, E.; Rähse, W.; Steber, J.; Wiebel, F.; Nordskog, A. (2011). "Laundry Detergents, 1. Introduction". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, GER: Wiley-VCH. doi:10.1002/14356007.a08_315.pub3. ISBN   978-3527306732.
  2. Arno Cahn (30 January 1994). Proceedings of the 3rd World Conference on Detergents: Global Perspectives. The American Oil Chemists Society. p. 141. ISBN   978-0-935315-52-3.
  3. Jelinek, Charles F.; Mayhew, Raymond L. (September 1954). "Nonionic Detergents". Industrial & Engineering Chemistry. 46 (9): 1930–1934. doi:10.1021/ie50537a045.
  4. A USpatent 1970578 A,Schoeller, Conrad & Wittwer, Max,"Assistants for the textile and related industries",issued 1934-08-21, assigned to IG Farbenindustrie AG
  5. 1 2 3 Di Serio, Martino; Tesser, Riccardo; Santacesaria, Elio (December 2005). "Comparison of Different Reactor Types Used in the Manufacture of Ethoxylated, Propoxylated Products". Industrial & Engineering Chemistry Research. 44 (25): 9482–9489. doi:10.1021/ie0502234.
  6. Di Serio, M.; Vairo, G.; Iengo, P.; Felippone, F.; Santacesaria, E. (January 1996). "Kinetics of Ethoxylation and Propoxylation of 1- and 2-Octanol Catalyzed by KOH". Industrial & Engineering Chemistry Research. 35 (11): 3848–3853. doi:10.1021/ie960200c.
  7. Kosswig, Kurt (2002). "Surfactants". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, GER: Wiley-VCH. doi:10.1002/14356007.a25_747. ISBN   978-3527306732.
  8. Cox, Michael F. (September 1990). "The effect of "peaking" the ethylene oxide distribution on the performance of alcohol ethoxylates and ether sulfates". Journal of the American Oil Chemists' Society. 67 (9): 599–604. doi:10.1007/BF02540775. S2CID   85521585.
  9. US EPA (July 2006). "High production volume (HPV) challenge program". Archived from the original on 2011-11-17.
  10. Roberts, David W. (May 1998). "Sulfonation Technology for Anionic Surfactant Manufacture". Organic Process Research & Development. 2 (3): 194–202. doi:10.1021/op9700439.
  11. 1 2 Anon. [HERA Substance Team] (2004-06-15). Alcohol Ethoxysulphates (AES) Environmental Risk Assessment (PDF). Brussels, BEL: Human and Environmental Risk Assessment (HERA) Project. The HERA (Human and Environmental Risk Assessment) project is a European voluntary initiative launched in 1999 by the following organizations: A.I.S.E. representing the formulators and manufacturers of household and maintenance cleaning products. Cefic representing the suppliers and manufacturers of the raw materials.[ page needed ] This 36 page report is an HERA document on this ingredient in European household cleaning products.
  12. Sanderson, Hans; Van Compernolle, Remi; Dyer, Scott D.; Price, Bradford B.; Nielsen, Allen M.; Selby, Martin; Ferrer, Darci; Stanton, Kathleen (2013). "Occurrence and risk screening of alcohol ethoxylate surfactants in three U.S. River sediments associated with wastewater treatment plants". Science of the Total Environment. 463–464: 600–610. Bibcode:2013ScTEn.463..600S. doi: 10.1016/j.scitotenv.2013.05.047 . PMID   23835070.
  13. Federle, Thomas W; Nina R. Itrich (2004). "Effect of Ethoxylate Number and Alkyl Chain Length on the Pathway and Kinetics of Linear Alcohol Ethoxylate Biodegradation in Activated Sludge". Environmental Toxicology and Chemistry. 23 (12): 2790–2798. doi:10.1897/04-053.1. PMID   15648751. S2CID   37587650.
  14. Varadaraj, Ramesh; Bock, Jan; Brons, Neil; Zushma, Steve (1994). "Influence of Surfactant Structure on Wettability Modification of Hydrophobic Granular Surfaces". Journal of Colloid and Interface Science. 167 (1): 207–210. Bibcode:1994JCIS..167..207V. doi:10.1006/jcis.1994.1350. ISSN   0021-9797.
  15. 1 2 3 4 Anon. [HERA Substance Team] (2009-09-01). Alcohol Ethoxylates, Version 2.0 (PDF). Brussels, BEL: Human and Environmental Risk Assessment (HERA) Project.[ page needed ] See preceding HERA reference for explanation of the publishing organisation. This 244 page book is the latest HERA document on ingredients of European household cleaning products.
  16. 1 2 Anon. [HERA Substance Team] (2003-12-02). Alcohol Ethoxysulphates Human Health Risk Assessment, Draft (PDF). Brussels, BEL: Human and Environmental Risk Assessment (HERA) Project. Retrieved 14 March 2016.[ page needed ] See preceding HERA reference for explanation of the publishing organisation. This 57 page report is the latest HERA document on this ingredient of European household cleaning products. Note, the HERA web site, , access date as above, bears the December date; the document bears a date of January 2003.
  17. Fruijtier-Pölloth, Claudia (2005). "Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products". Toxicology . 214 (1–2): 1–38. doi:10.1016/j.tox.2005.06.001. ISSN   0300-483X. PMID   16011869.
  18. Stickney, Julie A; Sager, Shawn L; Clarkson, Jacquelyn R; Smith, Lee Ann; Locey, Betty J; Bock, Michael J; Hartung, Rolf; Olp, Steven F (2003). "An updated evaluation of the carcinogenic potential of 1,4-dioxane". Regulatory Toxicology and Pharmacology . 38 (2): 183–195. doi:10.1016/S0273-2300(03)00090-4. ISSN   0273-2300. PMID   14550759.
  19. 1 2 Prats, Daniel; Carmen Lopez; Diana Vallejo; Pedro Varo; Victor M. Leon (2006). "Effect of Temperature on the Biodegradation of Linear Alkylbenzene Sulfonate and Alcohol Ethoxylate". Journal of Surfactants and Detergents. 9 (1): 69–75. doi:10.1007/s11743-006-0377-8. S2CID   94398901.
  20. Guckert, J.B.; Walker, D.D.; Belanger, S.E (1996). "Environmental chemistry for a surfactant exotoxicology study supports rapid degradation of C12 alkyl sulfate in a continuous-flow stream mesocosm". Environ. Chem. Toxicol. 15 (3): 262–269. doi:10.1002/etc.5620150306.
  21. Belanger, SE; KL Rupe; RG Bausch (1995). "Responses of Invertebrates and Fish to Alkyl Sulfate and Alkyl Ethoxylate Sulfate Anionic Surfactants During Chronic Exposure". Environmental Contamination and Toxicology. 55 (5): 751–758. doi:10.1007/BF00203763. PMID   8563210. S2CID   27669051.
  22. van de Plassche, Erik J.; de Bruijn, Jack H. M.; Stephenson, Richard R.; Marshall, Stuart J.; Feijtel, Tom C. J.; Belanger, Scott E. (1999). "Predicted no-effect concentrations and risk characterization of four surfactants: Linear alkyl benzene sulfonate, alcohol ethoxylates, alcohol ethoxylated sulfates, and soap". Environmental Toxicology and Chemistry. 18 (11): 2653–2663. doi:10.1002/etc.5620181135. ISSN   0730-7268. S2CID   34750467.
  23. Ogulur, Ismail; Pat, Yagiz; Aydin, Tamer; Yazici, Duygu; Rückert, Beate; Peng, Yaqi; Kim, Juno; Radzikowska, Urszula; Westermann, Patrick (2022-12-01). "Gut epithelial barrier damage caused by dishwasher detergents and rinse aids". The Journal of Allergy and Clinical Immunology . doi: 10.1016/j.jaci.2022.10.020 . PMID   36464527. S2CID   254244862.