Repeat unit

Last updated

In polymer chemistry, a repeat unit or repeating unit (or mer) is a part of a polymer whose repetition would produce the complete polymer chain (except for the end-groups) by linking the repeat units together successively along the chain, like the beads of a necklace. [1] [2]

Contents

IUPAC definition for constitutional unit in polymer chemistry IUPAC definition for constitutional unit in polymer chemistry.png
IUPAC definition for constitutional unit in polymer chemistry
IUPAC definition for constitutional repeating unit (CRU) in polymer chemistry IUPAC definition for constitutional repeating unit (CRU) in polymer chemistry.png
IUPAC definition for constitutional repeating unit (CRU) in polymer chemistry

A repeat unit is sometimes called a mer (or mer unit). "Mer" originates from the Greek word meros, which means "a part". The word polymer derives its meaning from this, which means "many mers". A repeat unit (mer) is not to be confused with the term monomer, which refers to the small molecule from which a polymer is synthesized. [3]

One of the simplest repeat units is that of the addition polymer polyvinyl chloride, -[CH2-CHCl]n-, whose repeat unit is -[CH2-CHCl]-. In this case the repeat unit has the same atoms as the monomer vinyl chloride CH2=CHCl. When the polymer is formed, the C=C double bond in the monomer is replaced by a C-C single bond in the polymer repeat unit, which links by two new bonds to adjoining repeat units.

In condensation polymers (see examples below), the repeat unit contains fewer atoms than the monomer or monomers from which it is formed.

The subscript "n" denotes the degree of polymerisation, that is, the number of units linked together. The molecular mass of the repeat unit, MR, is simply the sum of the atomic masses of the atoms within the repeat unit. The molecular mass of the chain is just the product nMR. Other than monodisperse polymers, there is normally a molar mass distribution caused by chains of different length.

In copolymers there are two or more types of repeat unit, which may be arranged in alternation, or at random, or in other more complex patterns.

Other vinyl polymers

Polyethylene may be considered either as -[CH2-CH2-]n- with a repeat unit of -[CH2-CH2]-, or as [-CH2-]n-, with a repeat unit of -[CH2]-. Chemists tend to consider the repeat unit as -[CH2-CH2]- since this polymer is made from the monomer ethylene (CH2=CH2).

More complex repeat units can occur in vinyl polymers -[CH2-CHR]n-, if one hydrogen in the ethylene repeat unit is substituted by a larger fragment R. Polypropylene -[CH2-CH(CH3)]n- has the repeat unit -[CH2-CH(CH3)]. Polystyrene has a chain where the substituent R is a phenyl group (C6H5), corresponding to a benzene ring minus one hydrogen: -[CH2-CH(C6H5)]n-, so the repeat unit is -[CH2-CH(C6H5)]-.

Condensation polymers: repeat unit and structural units

Polyethylene terephthalate.svg

In many condensation polymers, the repeat unit contains two structural units related to the comonomers which have been polymerized. For example, in polyethylene terephthalate (PET or "polyester"), the repeat unit is -CO-C6H4-CO-O-CH2-CH2-O-. The polymer is formed by the condensation reaction of the two monomers terephthalic acid (HOOC-C6H4-COOH) and ethylene glycol (HO-CH2-CH2-OH), or their chemical derivatives. The condensation involves loss of water, as an H is lost from each HO- group in the glycol, and an OH from each HOOC- group in the acid. The two structural units in the polymer are then considered to be -CO-C6H4-CO- and -O-CH2-CH2-O-.

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Ether</span> Organic compounds made of alkyl/aryl groups bound to oxygen (R–O–R)

In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two organyl groups. They have the general formula R−O−R′, where R and R′ represent organyl groups. Ethers can again be classified into two varieties: if the organyl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

In chemistry, a monomer is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization.

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer (;) is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Polymerization</span> Chemical reaction to form polymer chains

In polymer chemistry, polymerization, or polymerisation, is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them.

A Ziegler–Natta catalyst, named after Karl Ziegler and Giulio Natta, is a catalyst used in the synthesis of polymers of 1-alkenes (alpha-olefins). Two broad classes of Ziegler–Natta catalysts are employed, distinguished by their solubility:

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Polyethylene</span> Most common thermoplastic polymer

Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, etc.). As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.

<span class="mw-page-title-main">Ethylene oxide</span> Cyclic compound (C2H4O)

Ethylene oxide is an organic compound with the formula C2H4O. It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of a silver catalyst.

<span class="mw-page-title-main">Polymer backbone</span> Longest chain of covalently-bonded atoms in a polymer

In polymer science, the polymer chain or simply backbone of a polymer is the main chain of a polymer. Polymers are often classified according to the elements in the main chains. The character of the backbone, i.e. its flexibility, determines the properties of the polymer. For example, in polysiloxanes (silicone), the backbone chain is very flexible, which results in a very low glass transition temperature of −123 °C. The polymers with rigid backbones are prone to crystallization in thin films and in solution. Crystallization in its turn affects the optical properties of the polymers, its optical band gap and electronic levels.

In polymer chemistry, an addition polymer is a polymer that forms by simple linking of monomers without the co-generation of other products. Addition polymerization differs from condensation polymerization, which does co-generate a product, usually water. Addition polymers can be formed by chain polymerization, when the polymer is formed by the sequential addition of monomer units to an active site in a chain reaction, or by polyaddition, when the polymer is formed by addition reactions between species of all degrees of polymerization. Addition polymers are formed by the addition of some simple monomer units repeatedly. Generally polymers are unsaturated compounds like alkenes, alkalines etc. The addition polymerization mainly takes place in free radical mechanism. The free radical mechanism of addition polymerization completed by three steps i.e. Initiation of free radical, Chain propagation, Termination of chain.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

<span class="mw-page-title-main">Chain-growth polymerization</span> Polymerization technique

Chain-growth polymerization (AE) or chain-growth polymerisation (BE) is a polymerization technique where unsaturated monomer molecules add onto the active site on a growing polymer chain one at a time. There are a limited number of these active sites at any moment during the polymerization which gives this method its key characteristics.

In polymer chemistry, a structural unit is a building block of a polymer chain. It is the result of a monomer which has been polymerized into a long chain.

In polymer chemistry, vinyl polymers are a group of polymers derived from substituted vinyl monomers. Their backbone is an extended alkane chain [−CH2−CHR−]. In popular usage, "vinyl" refers only to polyvinyl chloride (PVC).

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

In polymer chemistry, chain termination is any chemical reaction that ceases the formation of reactive intermediates in a chain propagation step in the course of a polymerization, effectively bringing it to a halt.

In polymers, such as plastics, thermal degradation refers to a type of polymer degradation where damaging chemical changes take place at elevated temperatures, without the simultaneous involvement of other compounds such as oxygen. Simply put, even in the absence of air, polymers will begin to degrade if heated high enough. It is distinct from thermal-oxidation, which can usually take place at less elevated temperatures.

Group 14 hydrides are chemical compounds composed of hydrogen atoms and group 14 atoms.

References

  1. Rudin A. "Elements of Polymer Science and Engineering" (Academic Press 1982) p.3 ISBN   0-12-601680-1
  2. "2.2 Chain repeat units". Introduction to Polymers. The Open University (GB). Retrieved 31 July 2019.
  3. Callister, William D. (2007). Materials science and engineering : an introduction (7th ed.) New York : John Wiley & Sons. ISBN   978-0-471-73696-7