This article may be too technical for most readers to understand.(May 2014) |
End groups are an important aspect of polymer synthesis and characterization. In polymer chemistry, they are functional groups that are at the very ends of a macromolecule or oligomer (IUPAC). [1] In polymer synthesis, like condensation polymerization and free-radical types of polymerization, end-groups are commonly used and can be analyzed by nuclear magnetic resonance (NMR) to determine the average length of the polymer. Other methods for characterization of polymers where end-groups are used are mass spectrometry and vibrational spectrometry, like infrared and raman spectroscopy. These groups are important for the analysis of polymers and for grafting to and from a polymer chain to create a new copolymer. One example of an end group is in the polymer poly(ethylene glycol) diacrylate where the end-groups are circled.
End groups are seen on all polymers and the functionality of those end groups can be important in determining the application of polymers. Each type of polymerization (free radical, condensation or etc.) has end groups that are typical for the polymerization, and knowledge of these can help to identify the type of polymerization method used to form the polymer. [2]
Step-growth polymerization involves two monomers with bi- or multifunctionality to form polymer chains. Many polymers are synthesized via step-growth polymerization and include polyesters, polyamides, and polyurethanes. A sub-class of step-growth polymerization is condensation polymerization.
Condensation polymerization is an important class of step-growth polymerization, which is formed simply by the reaction of two monomers and results in the release of a water molecule. [3] Since these polymers are typically made up of two or more monomers, the resulting end groups are from the monomer functionality. Examples of condensation polymers can be seen with polyamides, polyacetals and polyesters. An example of polyester is polyethylene terephthalate (PET), which is made from the monomers terephthalic acid and ethylene glycol. If one of the components in the polymerization is in excess, then that polymers functionality will be at the ends of the polymers (a carboxylic acid or alcohol group respectively).
The end groups that are found on polymers formed through free radical polymerization are a result from the initiators and termination method used. [3] There are many types of initiators used in modern free radical polymerizations, and below are examples of some well-known ones. For example, azobisisobutyronitrile or AIBN forms radicals that can be used as the end groups for new starting polymer chains with styrene to form polystyrene. Once the polymer chain has formed and the reaction is terminated, the end group opposite from the initiator is a result of the terminating agent or the chain transfer agent used.
Graft copolymers are generated by attaching chains of one monomer to the main chain of another polymer; a branched block copolymer is formed. [3] Furthermore, end groups play an important role in the process of initiation, propagation and termination of graft polymers. Graft polymers can be achieved by either "grafting from" or "grafting to"; these different methods are able to produce a vast array of different polymer structures, which can be tailored to the application in question. [4] The "grafting from" approach involves, for example, generation of radicals along a polymer chain, which can then be reacted with monomers to grow a new polymer from the backbone of another. In "grafting from," the initiation sites on the backbone of the first polymer can be part of the backbone structure originally or generated in situ. [3] The "grafting to" approach involves the reaction of functionalized monomers to a polymer backbone. [4] In graft polymers, end groups play an important role, for example, in the "grafting to" technique the generation of the reactive functionalized monomers occurs at the end group, which is then tethered to the polymer chain. There are various methods to synthesize graft polymers some of the more common include redox reaction to produce free radicals, by free radical polymerization techniques avoiding chain termination (ATRP, RAFT, nitroxide mediated, for example) and step-growth polymerization. A schematic of "grafting from" and "grafting to" is illustrated in the figure below.
The "grafting from" technique involves the generation of radicals along the polymer backbone from an abstraction of a halogen, from either the backbone or a functional group along the backbone. Monomers are reacted with the radicals along the backbone and subsequently generate polymers which are grafted from the backbone of the first polymer. The schematic for "grafting to" shows an example using anionic polymerizations, the polymer containing the carbonyl functionalities gets attacked by the activated polymer chain and generates a polymer attached to the associated carbon along with an alcohol group, in this example. These examples show us the potential of fine tuning end groups of polymer chains to target certain copolymer structures.
Because of the importance of end groups, there have been many analytical techniques developed for the identification of the groups. The three main methods for analyzing the identity of the end group are by NMR, mass spectrometry (MS) or vibrational spectroscopy (IR or Raman). [5] Each technique has its advantages and disadvantages, which are details below.
The advantage of NMR for end groups is that it allows for not only the identification of the end group units, but also allows for the quantification of the number-average length of the polymer. [6] End-group analysis with NMR requires that the polymer be soluble in organic or aqueous solvents. Additionally, the signal on the end-group must be visible as a distinct spectral frequency, i.e. it must not overlap with other signals. As molecular weight increases, the width of the spectral peaks also increase. As a result of this, methods which rely on resolution of the end-group signal are mostly used for polymers of low molecular weight (roughly less than 20,000 g/mol number-average molecular weight). [7] By using the information obtained from the integration of a 1H NMR spectrum, the degree of polymerization (Xn) can be calculated. With knowledge of the identity of the end groups/repeat unit and the number of protons contained on each, the Xn can then be calculated. For this example above, once the 1H NMR has been integrated and the values have been normalized to 1, the degree of polymerization is calculated by simply dividing the normalized value for the repeat unit by the number of protons continued in the repeat unit. For this case, Xn = n = 100/2, and therefore Xn = 50, or there are 50 repeat units in this monomer.
Mass spectrometry (MS) is helpful for the determination of the molecular weight of the polymer, structure of the polymer, etc. Although chemists utilize many kinds of MS, the two that are used most typically are matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) and electrospray ionization-mass spectroscopy (ESI-MS). [5] [8] [9] One of the biggest disadvantages of this technique is that much like NMR spectroscopy the polymers have to be soluble in some organic solvent. An advantage of using MALDI is that it provides the simpler data to interpret for end group identification compared with ESI, but a disadvantage is that the ionization can be rather hard and as a result some end groups do not remain intact for analysis. [2] Because of the harsh ionization in MALDI, one of the biggest advantages of using ESI is for its "softer" ionization methods. The disadvantage of using ESI is that the data obtained can be very complex due to the mechanism of the ionization and thus can be difficult to interpret.
The vibrational spectroscopy methods used to analyze the end groups of a polymer are infrared (IR) and Raman spectroscopy. These methods are useful in fact that the polymers do not need to be soluble in a solvent and spectra can be obtained simply from solid material. [5] A disadvantage of the technique is that only qualitative data is typically obtained on the identification end groups. [2]
Controlled radical polymerization, namely reversible addition−fragmentation chain-transfer polymerization (RAFT), is a common method for the polymerization of acrylates, methacrylates and acrylamides. Usually, a thiocarbonate is used in combination with an effective initiator for RAFT. The thiocarbonate moiety can be functionalized at the R-group for end group analysis. The end group is a result of the propagation of chain-transfer agents during the free-radical polymerization process. The end groups can subsequently be modified by the reaction of the thiocarbonylthio compounds with nucleophiles and ionic reducing agents. [10]
The method for removal of thiocarbonyl containing end groups includes reacting the polymers containing the end-groups with en excess of radicals which add to the reactive C=S bond of the end group forming an intermediate radical (shown below). The remaining radical on the polymer chain can be hydrogenated by what is referred to as a trapping group and terminate; this results in a polymer that is free of the end groups at the α and ω positions. [11]
Another method of end group removal for the thiocarbonyl containing end-groups of RAFT polymers is the addition of heat to the polymer; this is referred to as thermolysis. One method of monitoring thermolysis of RAFT polymers is by thermogravimetric analysis resulting in a weight-loss of the end group. An advantage of this technique is that no additional chemicals are required to remove the end group; however, it is required that the polymer be thermally stable to high temperature and therefore may not be effective for some polymers. Depending on the polymers sensitivity to ultraviolet radiation (UV) it has been reported in recent years that decomposition of end-groups can be effective, but preliminary data suggest that decomposition by UV leads to a change in the distribution of molecular weights of the polymer. [12]
Surface modification has gained a lot of interest in recent years for a variety of applications. An example of the application of free radical polymerizations to forming new architectures is through RAFT polymerizations which result in dithioester end groups. These dithioesters can be reduced to the thiol which can be immobilized on a metal surface; this is important for applications in electronics, sensing and catalysis. The schematic below demonstrates the immobilization of copolymers onto a gold surface as reported for poly(sodium 4-styrenesulfonate) by the McCormick group at the University of Southern Mississippi. [13]
A polymer (;) is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.
In polymer chemistry, polymerization, or polymerisation, is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them.
In polymer chemistry, living polymerization is a form of chain growth polymerization where the ability of a growing polymer chain to terminate has been removed. This can be accomplished in a variety of ways. Chain termination and chain transfer reactions are absent and the rate of chain initiation is also much larger than the rate of chain propagation. The result is that the polymer chains grow at a more constant rate than seen in traditional chain polymerization and their lengths remain very similar. Living polymerization is a popular method for synthesizing block copolymers since the polymer can be synthesized in stages, each stage containing a different monomer. Additional advantages are predetermined molar mass and control over end-groups.
In chemistry, the dispersity is a measure of the heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is called uniform if the objects have the same size, shape, or mass. A sample of objects that have an inconsistent size, shape and mass distribution is called non-uniform. The objects can be in any form of chemical dispersion, such as particles in a colloid, droplets in a cloud, crystals in a rock, or polymer macromolecules in a solution or a solid polymer mass. Polymers can be described by molecular mass distribution; a population of particles can be described by size, surface area, and/or mass distribution; and thin films can be described by film thickness distribution.
In polymer chemistry, emulsion polymerization is a type of radical polymerization that usually starts with an emulsion incorporating water, monomers, and surfactants. The most common type of emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer are emulsified in a continuous phase of water. Water-soluble polymers, such as certain polyvinyl alcohols or hydroxyethyl celluloses, can also be used to act as emulsifiers/stabilizers. The name "emulsion polymerization" is a misnomer that arises from a historical misconception. Rather than occurring in emulsion droplets, polymerization takes place in the latex/colloid particles that form spontaneously in the first few minutes of the process. These latex particles are typically 100 nm in size, and are made of many individual polymer chains. The particles are prevented from coagulating with each other because each particle is surrounded by the surfactant ('soap'); the charge on the surfactant repels other particles electrostatically. When water-soluble polymers are used as stabilizers instead of soap, the repulsion between particles arises because these water-soluble polymers form a 'hairy layer' around a particle that repels other particles, because pushing particles together would involve compressing these chains.
In polymer chemistry, an addition polymer is a polymer that forms by simple linking of monomers without the co-generation of other products. Addition polymerization differs from condensation polymerization, which does co-generate a product, usually water. Addition polymers can be formed by chain polymerization, when the polymer is formed by the sequential addition of monomer units to an active site in a chain reaction, or by polyaddition, when the polymer is formed by addition reactions between species of all degrees of polymerization. Addition polymers are formed by the addition of some simple monomer units repeatedly. Generally polymers are unsaturated compounds like alkenes, alkalines etc. The addition polymerization mainly takes place in free radical mechanism. The free radical mechanism of addition polymerization completed by three steps i.e. Initiation of free radical, Chain propagation, Termination of chain.
In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively. Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.
In polymer chemistry, free-radical polymerization (FRP) is a method of polymerization by which a polymer forms by the successive addition of free-radical building blocks. Free radicals can be formed by a number of different mechanisms, usually involving separate initiator molecules. Following its generation, the initiating free radical adds (nonradical) monomer units, thereby growing the polymer chain.
Reversible addition−fragmentation chain-transfer or RAFT polymerization is one of several kinds of reversible-deactivation radical polymerization. It makes use of a chain-transfer agent (CTA) in the form of a thiocarbonylthio compound to afford control over the generated molecular weight and polydispersity during a free-radical polymerization. Discovered at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia in 1998, RAFT polymerization is one of several living or controlled radical polymerization techniques, others being atom transfer radical polymerization (ATRP) and nitroxide-mediated polymerization (NMP), etc. RAFT polymerization uses thiocarbonylthio compounds, such as dithioesters, thiocarbamates, and xanthates, to mediate the polymerization via a reversible chain-transfer process. As with other controlled radical polymerization techniques, RAFT polymerizations can be performed under conditions that favor low dispersity and a pre-chosen molecular weight. RAFT polymerization can be used to design polymers of complex architectures, such as linear block copolymers, comb-like, star, brush polymers, dendrimers and cross-linked networks.
In polymer chemistry, branching is the regular or irregular attachment of side chains to a polymer's backbone chain. It occurs by the replacement of a substituent on a monomer subunit by another covalently-bonded chain of that polymer; or, in the case of a graft copolymer, by a chain of another type. Branched polymers have more compact and symmetrical molecular conformations, and exhibit intra-heterogeneous dynamical behavior with respect to the unbranched polymers. In crosslinking rubber by vulcanization, short sulfur branches link polyisoprene chains into a multiple-branched thermosetting elastomer. Rubber can also be so completely vulcanized that it becomes a rigid solid, so hard it can be used as the bit in a smoking pipe. Polycarbonate chains can be crosslinked to form the hardest, most impact-resistant thermosetting plastic, used in safety glasses.
pH sensitive or pH responsive polymers are materials which will respond to the changes in the pH of the surrounding medium by varying their dimensions. Materials may swell, collapse, or change depending on the pH of their environment. This behavior is exhibited due to the presence of certain functional groups in the polymer chain. pH-sensitive materials can be either acidic or basic, responding to either basic or acidic pH values. These polymers can be designed with many different architectures for different applications. Key uses of pH sensitive polymers are controlled drug delivery systems, biomimetics, micromechanical systems, separation processes, and surface functionalization.
Polyanhydrides are a class of biodegradable polymers characterized by anhydride bonds that connect repeat units of the polymer backbone chain. Their main application is in the medical device and pharmaceutical industry. In vivo, polyanhydrides degrade into non-toxic diacid monomers that can be metabolized and eliminated from the body. Owing to their safe degradation products, polyanhydrides are considered to be biocompatible.
Catalytic chain transfer (CCT) is a process that can be incorporated into radical polymerization to obtain greater control over the resulting products.
Living free radical polymerization is a type of living polymerization where the active polymer chain end is a free radical. Several methods exist. IUPAC recommends to use the term "reversible-deactivation radical polymerization" instead of "living free radical polymerization", though the two terms are not synonymous.
Polymeric materials have widespread application due to their versatile characteristics, cost-effectiveness, and highly tailored production. The science of polymer synthesis allows for excellent control over the properties of a bulk polymer sample. However, surface interactions of polymer substrates are an essential area of study in biotechnology, nanotechnology, and in all forms of coating applications. In these cases, the surface characteristics of the polymer and material, and the resulting forces between them largely determine its utility and reliability. In biomedical applications for example, the bodily response to foreign material, and thus biocompatibility, is governed by surface interactions. In addition, surface science is integral part of the formulation, manufacturing, and application of coatings.
In polymer chemistry, reversible-deactivation radical polymerizations (RDRPs) are members of the class of reversible-deactivation polymerizations which exhibit much of the character of living polymerizations, but cannot be categorized as such as they are not without chain transfer or chain termination reactions. Several different names have been used in literature, which are:
A sequence-controlled polymer is a macromolecule, in which the sequence of monomers is controlled to some degree. This control can be absolute but not necessarily. In other words, a sequence-controlled polymer can be uniform or non-uniform (Ð>1). For example, an alternating copolymer synthesized by radical polymerization is a sequence-controlled polymer, even if it is also a non-uniform polymer, in which chains have different chain-lengths and slightly different compositions. A biopolymer with a perfectly-defined primary structure is also a sequence-controlled polymer. However, in the case of uniform macromolecules, the term sequence-defined polymer can also be used.
In polymer chemistry, graft polymers are segmented copolymers with a linear backbone of one composite and randomly distributed branches of another composite. The picture labeled "graft polymer" shows how grafted chains of species B are covalently bonded to polymer species A. Although the side chains are structurally distinct from the main chain, the individual grafted chains may be homopolymers or copolymers. Graft polymers have been synthesized for many decades and are especially used as impact resistant materials, thermoplastic elastomers, compatibilizers, or emulsifiers for the preparation of stable blends or alloys. One of the better-known examples of a graft polymer is a component used in high impact polystyrene, consisting of a polystyrene backbone with polybutadiene grafted chains.
Functionalized polyolefins are olefin polymers with polar and nonpolar functionalities attached onto the polymer backbone. There has been an increased interest in functionalizing polyolefins due to their increased usage in everyday life. Polyolefins are virtually ubiquitous in everyday life, from consumer food packaging to biomedical applications; therefore, efforts must be made to study catalytic pathways towards the attachment of various functional groups onto polyolefins in order to affect the material's physical properties.
The methods for sequence analysis of synthetic polymers differ from the sequence analysis of biopolymers. Synthetic polymers are produced by chain-growth or step-growth polymerization and show thereby polydispersity, whereas biopolymers are synthesized by complex template-based mechanisms and are sequence-defined and monodisperse. Synthetic polymers are a mixture of macromolecules of different length and sequence and are analysed via statistical measures.