Acrylamide

Last updated
Acrylamide
Acrylamide-2D-skeletal.png
Acrylamide-MW-2000-3D-balls.png
Names
Preferred IUPAC name
Prop-2-enamide [1]
Other names
Acrylamide
Acrylic amide [2]
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.067 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C3H5NO/c1-2-3(4)5/h2H,1H2,(H2,4,5) Yes check.svgY
    Key: HRPVXLWXLXDGHG-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H5NO/c1-2-3(4)5/h2H,1H2,(H2,4,5)
    Key: HRPVXLWXLXDGHG-UHFFFAOYAS
  • O=C(C=C)N
  • C=CC(=O)N
Properties
C3H5NO
Molar mass 71.079 g·mol−1
Appearancewhite crystalline solid, no odor [2]
Density 1.322 g/cm3
Melting point 84.5 °C (184.1 °F; 357.6 K)
Boiling point None (polymerization); decomposes at 175-300°C [2]
390 g/L (25 °C) [3]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
potential occupational carcinogen [2]
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg [4]
H301, H312, H315, H317, H319, H332, H340, H350, H361, H372 [4]
P201, P280, P301+P310, P305+P351+P338, P308+P313 [4]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
2
2
2
Flash point 138 °C (280 °F; 411 K)
424 °C (795 °F; 697 K)
Lethal dose or concentration (LD, LC):
100-200 mg/kg (mammal, oral)
107 mg/kg (mouse, oral)
150 mg/kg (rabbit, oral)
150 mg/kg (guinea pig, oral)
124 mg/kg (rat, oral) [5]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.3 mg/m3 [skin] [2]
REL (Recommended)
Ca TWA 0.03 mg/m3 [skin] [2]
IDLH (Immediate danger)
60 mg/m3 [2]
Safety data sheet (SDS) ICSC 0091
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Acrylamide (or acrylic amide) is an organic compound with the chemical formula CH2=CHC(O)NH2. It is a white odorless solid, soluble in water and several organic solvents. From the chemistry perspective, acrylamide is a vinyl-substituted primary amide (CONH2). It is produced industrially mainly as a precursor to polyacrylamides, which find many uses as water-soluble thickeners and flocculation agents. [6]

Contents

Acrylamide forms in burnt areas of food, particularly starchy foods like potatoes, when cooked with high heat, above 120 °C (248 °F). [7] Despite health scares following its discovery in 2002, and its possible classification as a carcinogen, acrylamide from diet is thought unlikely to cause cancer in humans; Cancer Research UK categorized the idea that burnt food causes cancer as a "myth". [8] [9]

Production

Acrylamide can be prepared by the hydration of acrylonitrile, which is catalyzed enzymatically: [6]

CH2=CHCN + H2O → CH2=CHC(O)NH2

This reaction also is catalyzed by sulfuric acid as well as various metal salts. Treatment of acrylonitrile with sulfuric acid gives acrylamide sulfate, CH=CHC(O)NH2·H2SO4. This salt can be converted to acrylamide with a base or to methyl acrylate with methanol.

Uses

Proteins of the erythrocyte separated by use of polyacrylamide gels (SDS-PAGE) RBC Membrane Proteins SDS-PAGE gel.jpg
Proteins of the erythrocyte separated by use of polyacrylamide gels (SDS-PAGE)

The majority of acrylamide is used to manufacture various polymers, especially polyacrylamide. This water-soluble polymer, which has very low toxicity, is widely used as thickener and flocculating agent. These functions are valuable in the purification of drinking water, corrosion inhibition, mineral extraction, and paper making. Polyacrylamide gels are routinely used in medicine and biochemistry for purification and assays. [6]

Toxicity and carcinogenicity

N-(D-glucos-1-yl)-L-asparagine, precursor to acrylamide in cooked food N-(D-glucos-1-yl)-L-asparagine.png
N-(D-glucos-1-yl)-L-asparagine, precursor to acrylamide in cooked food

Acrylamide can arise in some cooked foods via a series of steps by the reaction of the amino acid asparagine and glucose. This condensation, one of the Maillard reactions, followed by dehydrogenation produces N-(D-glucos-1-yl)-L-asparagine, which upon pyrolysis generates some acrylamide.

The discovery in 2002 that some cooked foods contain acrylamide attracted significant attention to its possible biological effects. [11] IARC, NTP, and the EPA have classified it as a probable carcinogen, although epidemiological studies (as of 2019) suggest that dietary acrylamide consumption does not significantly increase people's risk of developing cancer. [8]

Europe

According to the EFSA, the main toxicity risks of acrylamide are "Neurotoxicity, adverse effects on male reproduction, developmental toxicity and carcinogenicity". [9] [12] However, according to their research, there is no concern on non-neoplastic effects. Furthermore, while the relation between consumption of acrylamide and cancer in rats and mice has been shown, it is still unclear whether acrylamide consumption has an effect on the risk of developing cancer in humans, and existing epidemiological studies in humans are very limited and do not show any relation between acrylamide and cancer in humans. [9] [13] Food industry workers exposed to twice the average level of acrylamide do not exhibit higher cancer rates. [9]

United States

Acrylamide is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. [14]

Acrylamide is considered a potential occupational carcinogen by U.S. government agencies and classified as a Group 2A carcinogen by the IARC. [15] The Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set dermal occupational exposure limits at 0.03 mg/m3 over an eight-hour workday. [5]

Opinions of health organizations

Baking, grilling or broiling food causes significant concentrations of acrylamide. This discovery in 2002 led to international health concerns. Subsequent research has however found that it is not likely that the acrylamides in burnt or well-cooked food cause cancer in humans; Cancer Research UK categorizes the idea that burnt food causes cancer as a "myth". [9]

The American Cancer Society says that laboratory studies have shown that acrylamide is likely to be a carcinogen, but that as of 2019 evidence from epidemiological studies suggests that dietary acrylamide is unlikely to raise the risk of people developing most common types of cancer. [8]

Hazards

Acrylamide is also a skin irritant and may be a tumor initiator in the skin, potentially increasing risk for skin cancer. Symptoms of acrylamide exposure include dermatitis in the exposed area, and peripheral neuropathy. [15]

Laboratory research has found that some phytochemicals may have the potential to be developed into drugs which could alleviate the toxicity of acrylamide. [16]

Mechanism of action

Glycidamide is the dangerous metabolite produced from acrylamide, which in turn is produced by heating certain proteins. Glycidamide.svg
Glycidamide is the dangerous metabolite produced from acrylamide, which in turn is produced by heating certain proteins.

Acrylamide is metabolized to the genotoxic derivative glycidamide. On the other hand, acrylamide and glycidamide can be detoxified via conjugation with glutathione. [17] [18]

Occurrence in food

French fries are cooked to a high temperature. Too hot fried french fries IMG 0660.JPG
French fries are cooked to a high temperature.

Acrylamide was discovered in foods, mainly in starchy foods, such as potato chips (UK: potato crisps), French fries (UK: chips), and bread that had been heated higher than 120 °C (248 °F). Production of acrylamide in the heating process was shown to be temperature-dependent. It was not found in food that had been boiled, [19] or in foods that were not heated. [20]

Acrylamide has been found in roasted barley tea, called mugicha in Japanese. The barley is roasted so it is dark brown prior to being steeped in hot water. The roasting process produced 200–600 micrograms/kg of acrylamide in mugicha. [21] This is less than the >1000 micrograms/kg found in potato crisps and other fried whole potato snack foods cited in the same study and it is unclear how much of this enters the drink to be ingested. Rice cracker and sweet potato levels were lower than in potatoes. Potatoes cooked whole were found to have significantly lower acrylamide levels than the others, suggesting a link between food preparation method and acrylamide levels. [21]

Acrylamide levels appear to rise as food is heated for longer periods of time. Although researchers are still unsure of the precise mechanisms by which acrylamide forms in foods, [22] many believe it is a byproduct of the Maillard reaction. In fried or baked goods, acrylamide may be produced by the reaction between asparagine and reducing sugars (fructose, glucose, etc.) or reactive carbonyls at temperatures above 120 °C (248 °F). [23] [24]

Later studies have found acrylamide in black olives, [25] dried plums, [26] [27] dried pears, [26] coffee, [28] [29] and peanuts. [27]

The US FDA has analyzed a variety of U.S. food products for levels of acrylamide since 2002. [30]

Occurrence in cigarettes

Cigarette smoking is a major acrylamide source. [31] [32] It has been shown in one study to cause an increase in blood acrylamide levels three-fold greater than any dietary factor. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Cooking</span> Preparing food using heat

Cooking, also known as cookery or professionally as the culinary arts, is the art, science and craft of using heat to make food more palatable, digestible, nutritious, or safe. Cooking techniques and ingredients vary widely, from grilling food over an open fire to using electric stoves, to baking in various types of ovens, reflecting local conditions.

<span class="mw-page-title-main">Carcinogen</span> Substance, radionuclide, or radiation directly involved in causing cancer

A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis. This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive substances are considered carcinogens, but their carcinogenic activity is attributed to the radiation, for example gamma rays and alpha particles, which they emit. Common examples of non-radioactive carcinogens are inhaled asbestos, certain dioxins, and tobacco smoke. Although the public generally associates carcinogenicity with synthetic chemicals, it is equally likely to arise from both natural and synthetic substances. Carcinogens are not necessarily immediately toxic; thus, their effect can be insidious.

<span class="mw-page-title-main">Asparagine</span> Chemical compound

Asparagine is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, an α-carboxylic acid group, and a side chain carboxamide, classifying it as a polar, aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it. It is encoded by the codons AAU and AAC.

<span class="mw-page-title-main">Formaldehyde</span> Organic compound (H–CHO); simplest aldehyde

Formaldehyde ( for-MAL-di-hide, fər-) (systematic name methanal) is an organic compound with the formula CH2O and structure H−CHO. The compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde (refer to section Forms below). It is stored as aqueous solutions (formalin), which consists mainly of the hydrate CH2(OH)2. It is the simplest of the aldehydes (R−CHO). It is produced commercially as a precursor to many other materials and chemical compounds. In 2006, the global production rate of formaldehyde was estimated at 12 million tons per year. It is mainly used in the production of industrial resins, e.g., for particle board and coatings. Small amounts also occur naturally.

<span class="mw-page-title-main">Maillard reaction</span> Chemical reaction that gives browned food flavor

The Maillard reaction is a chemical reaction between amino acids and reducing sugars to create melanoidins, the compounds which give browned food its distinctive flavor. Seared steaks, fried dumplings, cookies and other kinds of biscuits, breads, toasted marshmallows, and many other foods undergo this reaction. It is named after French chemist Louis Camille Maillard, who first described it in 1912 while attempting to reproduce biological protein synthesis. The reaction is a form of non-enzymatic browning which typically proceeds rapidly from around 140 to 165 °C. Many recipes call for an oven temperature high enough to ensure that a Maillard reaction occurs. At higher temperatures, caramelization and subsequently pyrolysis become more pronounced.

Acrylonitrile is an organic compound with the formula CH2CHCN and the structure H2C=CH−C≡N. It is a colorless, volatile liquid. It has a pungent odor of garlic or onions. Its molecular structure consists of a vinyl group linked to a nitrile. It is an important monomer for the manufacture of useful plastics such as polyacrylonitrile. It is reactive and toxic at low doses.

<span class="mw-page-title-main">Polyacrylamide</span> Chemical compound

Polyacrylamide (abbreviated as PAM or pAAM) is a polymer with the formula (-CH2CHCONH2-). It has a linear-chain structure. PAM is highly water-absorbent, forming a soft gel when hydrated. In 2008, an estimated 750,000,000 kg were produced, mainly for water treatment and the paper and mineral industries.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Reducing sugar</span> Sugars that contain free OH group at the anomeric carbon atom

A reducing sugar is any sugar that is capable of acting as a reducing agent. In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a reaction, the sugar becomes a carboxylic acid.

<span class="mw-page-title-main">Acrolein</span> Chemical compound

Acrolein is the simplest unsaturated aldehyde. It is a colorless liquid with a foul and acrid aroma. The smell of burnt fat is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine.

<span class="mw-page-title-main">1,4-Dioxane</span> Chemical compound

1,4-Dioxane is a heterocyclic organic compound, classified as an ether. It is a colorless liquid with a faint sweet odor similar to that of diethyl ether. The compound is often called simply dioxane because the other dioxane isomers are rarely encountered.

Iodomethane, also called methyl iodide, and commonly abbreviated "MeI", is the chemical compound with the formula CH3I. It is a dense, colorless, volatile liquid. In terms of chemical structure, it is related to methane by replacement of one hydrogen atom by an atom of iodine. It is naturally emitted by rice plantations in small amounts. It is also produced in vast quantities estimated to be greater than 214,000 tons annually by algae and kelp in the world's temperate oceans, and in lesser amounts on land by terrestrial fungi and bacteria. It is used in organic synthesis as a source of methyl groups.

<span class="mw-page-title-main">Asparaginase</span> Enzyme used as medication and in food manufacturing

Asparaginase is an enzyme that is used as a medication and in food manufacturing. As a medication, L-asparaginase is used to treat acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma (LBL). It is given by injection into a vein, muscle, or under the skin. A pegylated version is also available. In food manufacturing it is used to decrease acrylamide.

<span class="mw-page-title-main">Diphenylamine</span> Chemical compound

Diphenylamine is an organic compound with the formula (C6H5)2NH. The compound is a derivative of aniline, consisting of an amine bound to two phenyl groups. The compound is a colorless solid, but commercial samples are often yellow due to oxidized impurities. Diphenylamine dissolves well in many common organic solvents, and is moderately soluble in water. It is used mainly for its antioxidant properties. Diphenylamine is widely used as an industrial antioxidant, dye mordant and reagent and is also employed in agriculture as a fungicide and antihelmintic.

1,1-Dichloroethene, commonly called 1,1-dichloroethylene or vinylidene chloride or 1,1-DCE, is an organochloride with the molecular formula C2H2Cl2. It is a colorless liquid with a sharp odor. Like most chlorocarbons, it is poorly soluble in water, but soluble in organic solvents. 1,1-DCE was the precursor to the original clingwrap, Saran, for food, but this application has been phased out.

4-Aminobiphenyl (4-APB) is an organic compound with the formula C6H5C6H4NH2. It is an amine derivative of biphenyl. It is a colorless solid, although aged samples can appear colored. 4-Aminobiphenyl was commonly used in the past as a rubber antioxidant and an intermediate for dyes. Exposure to this aryl-amine can happen through contact with chemical dyes and from inhalation of cigarette smoke. Researches showed that 4-aminobiphenyl is responsible for bladder cancer in humans and dogs by damaging DNA. Due to its carcinogenic effects, commercial production of 4-aminobiphenyl ceased in the United States in the 1950s.

<span class="mw-page-title-main">Glycidol</span> Chemical compound

Glycidol is an organic compound that contains both epoxide and alcohol functional groups. Being bifunctional, it has a variety of industrial uses. The compound is a slightly viscous liquid that is slightly unstable and is not often encountered in pure form.

<span class="mw-page-title-main">3,3'-Dichlorobenzidine</span> Chemical compound

3,3'-Dichlorobenzidine is an organic compound with the formula (C6H3Cl(NH2))2. The pure compound is pale yellow, but commercial samples are often colored. It is barely soluble in water and is often supplied as a wet paste. It is widely used in the production of diarylide yellow pigments used in the production of printing inks. Its use in the production of dyes has been largely discontinued because of concerns about carcinogenicity.

<span class="mw-page-title-main">Toast (food)</span> Bread that has been exposed to dry heat

Toast is sliced bread that has been browned by radiant heat. The browning is the result of a Maillard reaction altering the flavor of the bread and making it firmer. The firm surface is easier to spread toppings on and the warmth can help butter reach its melting point. Toasting is a common method of making stale bread more palatable. Bread is toasted using a toaster or a toaster oven. Toast may contain acrylamide caused by the browning process, which is suspected to be a carcinogen. However, claims that acrylamide in burnt toast causes cancer have not been proven.

<span class="mw-page-title-main">Glycidamide</span> Chemical compound

Glycidamide is an organic compound with the formula H2NC(O)C2H3O. It is a colorless, oil. Structurally, it contains adjacent amides and epoxide functional groups. It is a bioactive, potentially toxic or even carcinogenic metabolite of acrylonitrile and acrylamide. It is a chiral molecule.

References

  1. "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 842. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4.
  2. 1 2 3 4 5 6 7 NIOSH Pocket Guide to Chemical Hazards. "#0012". National Institute for Occupational Safety and Health (NIOSH).
  3. "Human Metabolome Database: Showing metabocard for Acrylamide (HMDB0004296)".
  4. 1 2 3 Sigma-Aldrich Co., Acrylamide. Retrieved on 2022-02-15.
  5. 1 2 Centers for Disease Control and Prevention (1994). "Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs) - Acrylamide".
  6. 1 2 3 Herth, Gregor; Schornick, Gunnar; l. Buchholz, Fredric (2015). "Polyacrylamides and Poly(Acrylic Acids)". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–16. doi:10.1002/14356007.a21_143.pub2. ISBN   9783527306732.
  7. "Does burnt food give you cancer?". University of Birmingham. Retrieved 2022-09-30.
  8. 1 2 3 "Acrylamide and Cancer Risk". American Cancer Society. 11 February 2019.
  9. 1 2 3 4 5 "Can eating burnt foods cause cancer?". Cancer Research UK. 15 October 2021.
  10. Mendel Friedman (2003). "Chemistry, Biochemistry, and Safety of Acrylamide. A Review". J. Agric. Food Chem. 51 (16): 4504–4526. doi:10.1021/jf030204+. PMID   14705871.
  11. Ohara, Takashi; Sato, Takahisa; Shimizu, Noboru; Prescher, Günter; Schwind, Helmut; Weiberg, Otto; Marten, Klaus; Greim, Helmut (2003). "Acrylic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_161.pub2. ISBN   978-3527306732.
  12. "Scientific Opinion on acrylamide in food". EFSA Journal. 13 (6). June 2015. doi: 10.2903/j.efsa.2015.4104 .
  13. "Acrylamide and Cancer Risk". National Cancer Institute (U.S. Department of Health and Human Services). December 5, 2017. Retrieved April 23, 2018.
  14. "40 C.F.R.: Appendix A to Part 355—The List of Extremely Hazardous Substances and Their Threshold Planning Quantities" (PDF). Edocket.access.gpo.gov (July 1, 2008 ed.). Government Printing Office. Archived from the original (PDF) on February 25, 2012. Retrieved October 29, 2011.
  15. 1 2 Dotson, GS (April 2011). "NIOSH skin notation (SK) profile: acrylamide [CAS No. 79-06-1]" (PDF). DHHS (NIOSH) Publication No. 2011-139.
  16. Adewale OO, Brimson JM, Odunola OA, Gbadegesin MA, Owumi SE, Isidoro C, Tencomnao T (2015). "The Potential for Plant Derivatives against Acrylamide Neurotoxicity". Phytother Res (Review). 29 (7): 978–85. doi:10.1002/ptr.5353. PMID   25886076. S2CID   5465814.
  17. "Scientific Opinion on acrylamide in food". EFSA Journal. 13 (6). 2015. doi: 10.2903/j.efsa.2015.4104 .
  18. Friedman, Mendel (2003). "Chemistry, Biochemistry, and Safety of Acrylamide. A Review". Journal of Agricultural and Food Chemistry. 51 (16): 4504–4526. doi:10.1021/jf030204+. PMID   14705871.
  19. "Acrylamide: your questions answered". Food Standards Agency. 3 July 2009. Archived from the original on 2012-02-12.
  20. Tareke, Eden; Rydberg, Per; Karlsson, Patrik; Eriksson, Sune; Törnqvist, Margareta (August 2002). "Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs". Journal of Agricultural and Food Chemistry. 50 (17): 4998–5006. doi:10.1021/jf020302f. PMID   12166997.
  21. 1 2 Ono, H.; Chuda, Y.; Ohnishi-Kameyama, M.; Yada, H.; Ishizaka, M.; Kobayashi, H.; Yoshida, M. (March 2003). "Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods". Food Additives and Contaminants. 20 (3): 215–220. doi:10.1080/0265203021000060887. PMID   12623644. S2CID   9380981.
  22. Jung, MY; Choi, DS; Ju, JW (2003). "A Novel Technique for Limitation of Acrylamide Formation in Fried and Baked Corn Chips and in French Fries". Journal of Food Science. 68 (4): 1287–1290. doi:10.1111/j.1365-2621.2003.tb09641.x.
  23. Mottram D.S.; Wedzicha B.L.; Dodson A.T. (2002). "Acrylamide is formed in the Maillard reaction". Nature. 419 (6906): 448–449. doi:10.1038/419448a. PMID   12368844. S2CID   4360610.
  24. Van Noorden, Richard (5 December 2007). "Acrylamide cancer link confirmed". Chemistry World .
  25. "Acrylamide detected in prune juice and olives" Food Safety & Quality Control Newsletter 26 March 2004, William Reed Business Media SAS, citing "Survey Data on Acrylamide in Food: Total Diet Study Results" Archived 2009-06-05 at the Wayback Machine United States Food and Drug Administration February 2004; later updated in June 2005, July 2006, and October 2006
  26. 1 2 Cosby, Renata (September 20, 2007). "Acrylamide in dried Fruits". ETH Life . Swiss Federal Institute of Technology Zurich. Retrieved 2017-05-29.
  27. 1 2 De Paola, Eleonora L; Montevecchi, Giuseppe; Masino, Francesca; Garbini, Davide; Barbanera, Martino; Antonelli, Andrea (February 2017). "Determination of acrylamide in dried fruits and edible seeds using QuEChERS extraction and LC separation with MS detection". Food Chemistry. 217: 191–195. doi:10.1016/j.foodchem.2016.08.101. hdl: 11380/1132604 . PMID   27664625.
  28. Mucci, Lorelei A.; Sandin, Sven; Bälter, Katarina; Adami, Hans-Olov; Magnusson, Cecilia; Weiderpass, Elisabete (16 March 2005). "Acrylamide Intake and Breast Cancer Risk in Swedish Women". JAMA. 293 (11): 1322–1327. doi:10.1001/jama.293.11.1326. PMID   15769965. S2CID   46166341.
  29. Top Eight Foods by Acrylamide Per Portion Archived 2016-03-02 at the Wayback Machine . p. 17. jifsan.umd.edu (2004). Retrieved on 2012-06-11.
  30. "Survey Data on Acrylamide in Food". FDA. 20 February 2020.
  31. "Public Health Statement for Acrylamide". ATSDR . CDC. December 2012.
  32. Vesper, H. W.; Bernert, J. T.; Ospina, M.; Meyers, T.; Ingham, L.; Smith, A.; Myers, G. L. (1 November 2007). "Assessment of the Relation between Biomarkers for Smoking and Biomarkers for Acrylamide Exposure in Humans". Cancer Epidemiology, Biomarkers & Prevention. 16 (11): 2471–2478. doi: 10.1158/1055-9965.EPI-06-1058 . PMID   18006939.
  33. Thonning Olesen, Pelle; Olsen, Anja; Frandsen, Henrik; Frederiksen, Kirsten; Overvad, Kim; Tjønneland, Anne (8 January 2008). "Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish Diet, Cancer and Health Study". International Journal of Cancer. 122 (9): 2094–2100. doi: 10.1002/ijc.23359 . PMID   18183576. S2CID   22388855.

Further reading