Sudan I

Last updated
Sudan I
Sudan I-gelb.png
Solvent yellow 14.jpg
Names
IUPAC name
1-(Phenyldiazenyl)naphthalen-2-ol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.011.517 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 212-668-2
KEGG
PubChem CID
UNII
  • InChI=1S/C16H12N2O/c19-15-11-10-12-6-4-5-9-14(12)16(15)18-17-13-7-2-1-3-8-13/h1-11,19H/b18-17+ Yes check.svgY
    Key: MRQIXHXHHPWVIL-ISLYRVAYSA-N Yes check.svgY
  • InChI=1/C16H12N2O/c19-15-11-10-12-6-4-5-9-14(12)16(15)18-17-13-7-2-1-3-8-13/h1-11,19H/b18-17+
    Key: MRQIXHXHHPWVIL-ISLYRVAYBO
  • Oc3ccc1ccccc1c3/N=N/c2ccccc2
Properties
C16H12N2O
Molar mass 248.28 g/mol
Melting point 131 °C (268 °F; 404 K)
−1.376×10−4 cm3/mol
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Warning
H317, H341, H351, H413
P201, P202, P261, P272, P273, P280, P281, P302+P352, P308+P313, P321, P333+P313, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sudan I (also known as CI Solvent Yellow 14 or Solvent Orange R) [1] is an organic compound, typically classified as an azo dye. [2] It is an intensely orange-red solid that is added to colorize waxes, oils, petrol, solvents, and polishes. Historically, Sudan I has also acted as a food coloring agent, especially for curry powder and chili powder. Owing to its classification as a category 3 carcinogenic hazard by the International Agency for Research on Cancer (not classifiable as to its carcinogenicity to humans), [3] Sudan I (as well as its derivatives Sudan III and Sudan IV) has been banned in many countries including the United States and European Union. [4] [5] [6] Nevertheless, Sudan I remains valuable as a coloring reagent for non-food-related uses, such as in the formulation of orange-colored smoke.

Contents

Application

The Sudan dyes are a group of azo compounds which have been used to color hydrocarbon solvents, oils, fats, waxes, shoes, and floor polishes. As recently as 1974, about 270,000 kg (600,000 lb) of Sudan I, 236,000 kg (520,000 lb) of Sudan II, 70,000 kg (150,000 lb) of Sudan III, and 1,075,000 kg (2,370,000 lb) of Sudan IV were produced in the United States.

Sudan I and Sudan III (1-(4-(phenyldiazenyl)phenyl) azonaphthalen-2-ol) are used for mostly the same application. Sudan III melts at a 68°C (154.4°F) higher temperature than Sudan I. [7]

Synthesis

The synthesis involves two steps, the first being the preparation of a solution of the diazonium salt, benzenediazonium chloride, from aniline. In the second step, the solution of the phenyldiazonium is added to 2-naphthol to produce the diazo dye.

Sudan I suffers from oxidative photo-degradation by two mechanisms, singlet oxygen degradation and free radical degradation, decreasing its fastness on materials. [8]

Degradation and metabolism

The metabolism of Sudan I, as characterized in rabbits, involves both oxidative or reductive reactions. [9]

Azo-reduction of Sudan I produces aniline and 1-amino-2-naphthol, and this reaction seems to be responsible for the detoxification. In vivo, after oxidation of Sudan I, C-hydroxylated metabolites are formed as major oxidation products and are excreted in urine. These metabolites are also found after oxidation with rat hepatic microsomes in vitro.

The C-hydroxylated metabolites may be considered as the detoxification products, while the benzenediazonium ion (BDI) formed by microsome-catalyzed enzymatic splitting of the azo group of Sudan I, reacts with DNA in vitro. [10] [11] The major DNA adduct formed in this reaction is identified as the 8-(phenylazo)guanine adduct, which was also found in liver DNA of rats who were exposed to Sudan I.

The formation of C-hydroxylated metabolites and DNA-adducts from Sultan I oxidation were also demonstrated with human CYP enzymes, with CYP1A1 being the major enzyme involved in the oxidation of Sudan I in human tissues rich in this enzyme, while CYP3A4 is also active in human liver.

The expression of CYP1A1 in human livers is low, less than 0.7% of the total hepatic CYP expression, while it contributes up to 12 to 30% in the oxidation of Sudan I in a set of human liver microsomes. [12] Moreover, Sudan I strongly induces CYP1A1 in rats and human cells in culture due to activation of the cytosolic aryl hydrocarbon receptor. [13]

In addition to oxidation by CYP enzymes, Sudan I and its C-hydroxylated metabolites are oxidized by peroxidases, such as a model plant peroxidase, but also by the mammalian enzyme cyclooxygenase. In bladder tissue, CYP enzymes are not detectable, while there are relatively high levels of peroxidases expressed in these tissues. As a consequence, DNA, RNA, and protein adducts are formed. [lower-alpha 1] Therefore, peroxidase-catalyzed activation of Sudan I has been suggested as mechanism in a similar way to other carcinogens, such as the carcinogenic aromatic amines. [lower-alpha 2]

It has been suggested that a CYP- or peroxidase-mediated activation of Sudan I or a combination of both mechanisms may be responsible for the organ specificity of this carcinogen for the liver and urinary bladder in animals. [24] The Sudan I metabolites formed by peroxidase are much less likely to be formed at physiological conditions, because in vivo there are many nucleophilic molecules present which scavenge the Sudan I reactive species. [25] Hence, the formation of adducts of Sudan I reactive species with nucleophilic species, such as DNA, tRNA, proteins, polynucleotides, and polydeoxynucleotides seems to be the preferred reaction under physiological conditions, with deoxyguanosine as the major target for Sudan-I DNA binding, followed by deoxyadenosine. [11]

Effect on humans

Sudan I is a compound being warned of for health hazards by the EU regulation. [26] It may cause allergic skin reactions and irritation of the skin. Exposure to the skin can happen by direct exposure to textile workers or by wearing tight-fitting textiles dyed with Sudan I. Allergic reactions are induced when the azo dye binds to the human serum albumin (HSA), forming a dye-HSA conjugate, which immunoglobulin E binds to, which causes a release of histamine. [27]

Sudan I is also suspected of causing genetic defects. The mutagenicity and genetic hazard have been evaluated with the Ames test and animal experiments. Furthermore, it is suspected of causing cancer. The carcinogenicity is estimated by animal testing. [27]

Safety and regulation

The regulation of Sudan I in Europe started in 2003 after repeated notifications were published in the EU rapid alert system. The EU rapid alert system announced that Sudan I was found in chili powder and the foods that were prepared with it. Due to the suspicion of genotoxicity and mutagenicity of Sudan I, a daily intake was not tolerable. The European Commission therefore prohibited the import of chili and hot chili products. Also the BfR (Bundesinstitut fuer Risikobewertung) was asked for their opinion and came to the conclusion that Sudan dyes are principally harmful to the health. Sudan I was classified as a category three carcinogen and category three mutagen in Annex I of Directive 67/548/EC. This classification was based on findings from animal experiments, conducted by the Federal Institute for Risk Assessment (BfR).

The regulation of azo colorants by ‘The EU azo Colorants Directive 2002/61/EC’ has been replaced by the REACH regulation in 2009, when azo dyes were put on the REACH Restriction list Annex XVII. [28] This includes that these dyes are forbidden to be used in textiles and leather, that may come in direct and prolonged contact with the skin or oral cavity. No textile of leather product are allowed to be colored with azo dyes a specific list of the items can be found in the Official Journal of the European Union. [29] Furthermore, it is prohibited to place any textile or leather articles colored with azo dyes on the market. [29]

A certificate for azo dyes exists to ensure that dyes that cleave to one of the forbidden amines are not being used for dyeing. All dyers should ensure that the supply company is fully informed about the legislation of the prohibited azo dyes. To ensure this, they should be members of the ETAD (Ecological and Toxicological Association of Dyes and Organic Pigments Manufacturers) from which they can receive their certificate. Non-ETAD member sources suppliers correlate with doubt about the origin and safety of the dyes. Dyes without certification are not advised to be used. [28]

Toxicology, genotoxicity, and mutagenesis

Humans

No specific information exists on Sudan I related to the toxic, genotoxic, and mutagenic effect on humans.

Animal Experiments

Sudan I was associated with a significant increase in neoplastic nodules and carcinomas in both male and female rats. [30] Other studies, however, showed no significantly increased incidence of micro-nucleated hepatocytes after the administration of Sudan I. These results suggest that the liver carcinogenicity may not be due to the genotoxic effects of Sudan I. No carcinogenic effects were visible in livers of mice after the application of Sudan I. [12] But when Sudan I is applied subcutaneously to mice, liver tumors were found.

Furthermore, DNA damage was depicted in the stomach and liver cells of mice. [31] In rats there was found to be no significant increase in the amount of micro-nucleated epithelial cells of the gastrointestinal tract. This indicates the absence of genotoxic compounds in the gastrointestinal epithelial cells in rats. [12]

Contradictive to the findings in the gastrointestinal tract and liver, there was an increase in micro-nucleated cells found in the bone marrow. The frequency of micro-nucleated bone marrow cells increased in a dose-dependent manner. Significantly higher incidences[ spelling? ] of micro-nucleated immature erythrocytes (MNIME)were found at a dose of 150/mg/day or more. This supports the explanation that Sudan I is oxidized or activated by peroxidase in the blood cells and thereby forming micro-nucleated cells. [12]

Guanosine DNA adducts derived from peroxidase metabolites of Sudan I were also found in vivo in the bladder of rats. The bladder also contains high levels of tissue peroxidase. [19]

Toxicology

Sudan I is genotoxic. It is also carcinogenic in rats. [32] Comparisons between experimental animals and human Cytochrome P450 (CYP) strongly suggest animal carcinogenicity data can be extrapolated to humans. [33]

Sudan I is also present as an impurity in Sunset Yellow FCF, which is its disulfonated water-soluble version.

Food scare

In February 2005, Sudan I gained attention, particularly in the United Kingdom. It was identified as a contaminant in Worcestershire sauce produced by Premier Foods. The Food Standards Agency traced the source of the contamination to adulterated chili powder. [34]

See also

Notes

  1. Attributed to multiple references: [10] [11] [14] [15] [16] [17] [18] [19]
  2. Attributed to multiple references: [20] [21] [22] [23]

Related Research Articles

<span class="mw-page-title-main">Carcinogen</span> Substance, radionuclide, or radiation directly involved in causing cancer

A carcinogen is any agent that promotes the development of cancer. Carcinogens can include synthetic chemicals, naturally occurring substances, physical agents such as ionizing and non-ionizing radiation, and biologic agents such as viruses and bacteria. Most carcinogens act by creating mutations in DNA that disrupt a cell's normal processes for regulating growth, leading to uncontrolled cellular proliferation. This occurs when the cell's DNA repair processes fail to identify DNA damage allowing the defect to be passed down to daughter cells. The damage accumulates over time. This is typically a multi-step process during which the regulatory mechanisms within the cell are gradually dismantled allowing for unchecked cellular division.

<span class="mw-page-title-main">Mutagen</span> Physical or chemical agent that increases the rate of genetic mutation

In genetics, a mutagen is a physical or chemical agent that permanently changes genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can cause cancer in animals, such mutagens can therefore be carcinogens, although not all necessarily are. All mutagens have characteristic mutational signatures with some chemicals becoming mutagenic through cellular processes.

<span class="mw-page-title-main">Safrole</span> Chemical compound

Safrole is an organic compound with the formula CH2O2C6H3CH2CH=CH2. It is a colorless oily liquid, although impure samples can appear yellow. A member of the phenylpropanoid family of natural products, it is found in sassafras plants, among others. Small amounts are found in a wide variety of plants, where it functions as a natural antifeedant. Ocotea pretiosa, which grows in Brazil, and Sassafras albidum, which grows in eastern North America, are the main natural sources of safrole. It has a characteristic "sweet-shop" aroma.

Genotoxicity is the property of chemical agents that damage the genetic information within a cell causing mutations, which may lead to cancer. While genotoxicity is often confused with mutagenicity, all mutagens are genotoxic, but some genotoxic substances are not mutagenic. The alteration can have direct or indirect effects on the DNA: the induction of mutations, mistimed event activation, and direct DNA damage leading to mutations. The permanent, heritable changes can affect either somatic cells of the organism or germ cells to be passed on to future generations. Cells prevent expression of the genotoxic mutation by either DNA repair or apoptosis; however, the damage may not always be fixed leading to mutagenesis.

Benzo(<i>a</i>)pyrene Carcinogenic compound found in smoke and soot

Benzo[a]pyrene (BaP or B[a]P) is a polycyclic aromatic hydrocarbon and the result of incomplete combustion of organic matter at temperatures between 300 °C (572 °F) and 600 °C (1,112 °F). The ubiquitous compound can be found in coal tar, tobacco smoke and many foods, especially grilled meats. The substance with the formula C20H12 is one of the benzopyrenes, formed by a benzene ring fused to pyrene. Its diol epoxide metabolites, more commonly known as BPDE, react with and bind to DNA, resulting in mutations and eventually cancer. It is listed as a Group 1 carcinogen by the IARC. In the 18th century a scrotal cancer of chimney sweepers, the chimney sweeps' carcinoma, was already known to be connected to soot.

<span class="mw-page-title-main">Methylcholanthrene</span> Chemical compound

Methylcholanthrene is a highly carcinogenic polycyclic aromatic hydrocarbon produced by burning organic compounds at very high temperatures. Methylcholanthrene is also known as 3-methylcholanthrene, 20-methylcholanthrene or the IUPAC name 3-methyl-1,2-dyhydrobenzo[j]aceanthrylene. The short notation often used is 3-MC or MCA. This compound forms pale yellow solid crystals when crystallized from benzene and ether. It has a melting point around 180 °C and its boiling point is around 280 °C at a pressure of 80 mmHg. Methylcholanthrene is used in laboratory studies of chemical carcinogenesis. It is an alkylated derivative of benz[a]anthracene and has a similar UV spectrum. The most common isomer is 3-methylcholanthrene, although the methyl group can occur in other places.

4-Aminobiphenyl (4-ABP) is an organic compound with the formula C6H5C6H4NH2. It is an amine derivative of biphenyl. It is a colorless solid, although aged samples can appear colored. 4-Aminobiphenyl was commonly used in the past as a rubber antioxidant and an intermediate for dyes. Exposure to this aryl-amine can happen through contact with chemical dyes and from inhalation of cigarette smoke. Researches showed that 4-aminobiphenyl is responsible for bladder cancer in humans and dogs by damaging DNA. Due to its carcinogenic effects, commercial production of 4-aminobiphenyl ceased in the United States in the 1950s.

<span class="mw-page-title-main">DNA adduct</span> Segment of DNA bound to a cancer-causing chemical

In molecular genetics, a DNA adduct is a segment of DNA bound to a cancer-causing chemical. This process could lead to the development of cancerous cells, or carcinogenesis. DNA adducts in scientific experiments are used as biomarkers of exposure. They are especially useful in quantifying an organism's exposure to a carcinogen. The presence of such an adduct indicates prior exposure to a potential carcinogen, but it does not necessarily indicate the presence of cancer in the subject animal.

<i>o</i>-Toluidine Aryl amine

o-Toluidine (ortho-toluidine) is an organic compound with the chemical formula CH3C6H4NH2. It is the most important of the three isomeric toluidines. It is a colorless liquid although commercial samples are often yellowish. It is a precursor to the herbicides metolachlor and acetochlor.

<span class="mw-page-title-main">2-Acetylaminofluorene</span> Chemical compound

2-Acetylaminofluorene is a carcinogenic and mutagenic derivative of fluorene. It is used as a biochemical tool in the study of carcinogenesis. It induces tumors in a number of species in the liver, bladder and kidney. The metabolism of this compound in the body by means of biotransformation reactions is the key to its carcinogenicity. 2-AAF is a substrate for cytochrome P-450 (CYP) enzyme, which is a part of a super family found in almost all organisms. This reaction results in the formation of hydroxyacetylaminofluorene which is a proximal carcinogen and is more potent than the parent molecule. The N-hydroxy metabolite undergoes several enzymatic and non-enzymatic rearrangements. It can be O-acetylated by cytosolic N-acetyltransferase enzyme to yield N-acetyl-N-acetoxyaminofluorene. This intermediate can spontaneously rearrange to form the arylamidonium ion and a carbonium ion which can interact directly with DNA to produce DNA adducts. In addition to esterification by acetylation, the N-hydroxy derivative can be O-sulfated by cytosolic sulfur transferase enzyme giving rise to the N-acetyl-N-sulfoxy product.

Aflatoxin B<sub>1</sub> Chemical compound

Aflatoxin B1 is an aflatoxin produced by Aspergillus flavus and A. parasiticus. It is a very potent carcinogen with a TD50 3.2 μg/kg/day in rats. This carcinogenic potency varies across species with some, such as rats and monkeys, seemingly much more susceptible than others. Aflatoxin B1 is a common contaminant in a variety of foods including peanuts, cottonseed meal, corn, and other grains; as well as animal feeds. Aflatoxin B1 is considered the most toxic aflatoxin and it is highly implicated in hepatocellular carcinoma (HCC) in humans. In animals, aflatoxin B1 has also been shown to be mutagenic, teratogenic, and to cause immunosuppression. Several sampling and analytical methods including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), mass spectrometry, and enzyme-linked immunosorbent assay (ELISA), among others, have been used to test for aflatoxin B1 contamination in foods. According to the Food and Agriculture Organization (FAO), a division of the United Nations, the worldwide maximum tolerated levels of aflatoxin B1 was reported to be in the range of 1–20 μg/kg (or .001 ppm - 1 part-per-billion) in food, and 5–50 μg/kg (.005 ppm) in dietary cattle feed in 2003.

Benzo(<i>j</i>)fluoranthene Chemical compound

Benzo[j]fluoranthene (BjF) is an organic compound with the chemical formula C20H12. Classified as a polycyclic aromatic hydrocarbon (PAH), it is a colourless solid that is poorly soluble in most solvents. Impure samples can appear off white. Closely related isomeric compounds include benzo[a]fluoranthene (BaF), benzo[b]fluoranthene (BbF), benzo[e]fluoranthene (BeF), and benzo[k]fluoranthene (BkF). BjF is present in fossil fuels and is released during incomplete combustion of organic matter. It has been traced in the smoke of cigarettes, exhaust from gasoline engines, emissions from the combustion of various types of coal and emissions from oil heating, as well as an impurity in some oils such as soybean oil.

<span class="mw-page-title-main">Riddelliine</span> Chemical compound

Riddelliine is a chemical compound classified as a pyrrolizidine alkaloid. It was first isolated from Senecio riddellii and is also found in a variety of plants including Jacobaea vulgaris, Senecio vulgaris, and others plants in the genus Senecio.

<span class="mw-page-title-main">2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine</span> Chemical compound


PhIP (2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) is one of the most abundant heterocyclic amines (HCAs) in cooked meat. PhIP is formed at high temperatures from the reaction between creatine or creatinine, amino acids, and sugar. PhIP formation increases with the temperature and duration of cooking and also depends on the method of cooking and the variety of meat being cooked. The U.S. Department of Health and Human Services National Toxicology Program has declared PhIP as "reasonably anticipated to be a human carcinogen". International Agency for Research on Cancer (IARC), part of World Health Organization, has classified PhIP as IARC Group 2B carcinogen. There is sufficient evidence in experimental animals, as well as in vitro models, for the carcinogenicity of PhIP.

Toxicodynamics, termed pharmacodynamics in pharmacology, describes the dynamic interactions of a toxicant with a biological target and its biological effects. A biological target, also known as the site of action, can be binding proteins, ion channels, DNA, or a variety of other receptors. When a toxicant enters an organism, it can interact with these receptors and produce structural or functional alterations. The mechanism of action of the toxicant, as determined by a toxicant’s chemical properties, will determine what receptors are targeted and the overall toxic effect at the cellular level and organismal level.

Benzo(<i>c</i>)fluorene Chemical compound

Benzo[c]fluorene is a polycyclic aromatic hydrocarbon (PAH) with mutagenic activity. It is a component of coal tar, cigarette smoke and smog and thought to be a major contributor to its carcinogenic properties. The mutagenicity of benzo[c]fluorene is mainly attributed to formation of metabolites that are reactive and capable of forming DNA adducts. According to the KEGG it is a group 3 carcinogen. Other names for benzo[c]fluorene are 7H-benzo[c]fluorene, 3,4-benzofluorene, and NSC 89264.

<span class="mw-page-title-main">Glycidamide</span> Chemical compound

Glycidamide is an organic compound with the formula H2NC(O)C2H3O. It is a colorless oil. Structurally, it contains adjacent amides and epoxide functional groups. It is a bioactive, potentially toxic or even carcinogenic metabolite of acrylonitrile and acrylamide. It is a chiral molecule.

<span class="mw-page-title-main">4-Ipomeanol</span> Chemical compound

4-Ipomeanol (4-IPO) is a pulmonary pre-toxin isolated from sweet potatoes infected with the fungus Fusarium solani. One of the 4-IPO metabolites is toxic to the lungs, liver and kidney in humans and animals. This metabolite can covalently bind to proteins, thereby interfering with normal cell processes.

<span class="mw-page-title-main">Hydroxylation of estradiol</span>

The hydroxylation of estradiol is one of the major routes of metabolism of the estrogen steroid hormone estradiol. It is hydroxylated into the catechol estrogens 2-hydroxyestradiol and 4-hydroxyestradiol and into estriol (16α-hydroxyestradiol), reactions which are catalyzed by cytochrome P450 enzymes predominantly in the liver, but also in various other tissues.

<span class="mw-page-title-main">Elizabeth C. Miller</span> American biochemist

Elizabeth Cavert Miller was an American biochemist, known for fundamental research into the chemical mechanism of cancer carcinogenesis, working closely with her husband James A. Miller.

References

  1. "Substance Name: C.I. Solvent Yellow 14". ChemIDplus, Toxnet Database. Retrieved 15 March 2022.
  2. Hunger, Klaus; Mischke, Peter; Rieper, Wolfgang; et al. (2005). "Azo Dyes". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_245. ISBN   978-3527306732.
  3. "List of Classifications - IARC Monographs". monographs.iarc.who.int. Retrieved 11 July 2024.
  4. Refat NA, Ibrahim ZS, Moustafa GG, et al. (2008). "The induction of cytochrome P450 1A1 by sudan dyes". J. Biochem. Mol. Toxicol. 22 (2): 77–84. doi:10.1002/jbt.20220. PMID   18418879. S2CID   206010951.
  5. Pan, Hongmiao; Feng, Jinhui; He, Gui-Xin; Cerniglia, Carl E.; Chen, Huizhong (May 2012). "Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria". Anaerobe. 18 (4): 445–453. doi:10.1016/j.anaerobe.2012.05.002. ISSN   1075-9964. PMC   5870115 . PMID   22634331.
  6. Genualdi, Susie; MacMahon, Shaun; Robbins, Katherine; Farris, Samantha; Shyong, Nicole; DeJager, Lowri (April 2016). "Method development and survey of Sudan I–IV in palm oil and chilli spices in the Washington, DC, area". Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 33 (4): 583–591. doi:10.1080/19440049.2016.1147986. ISSN   1944-0049. PMC   4888373 . PMID   26824489.
  7. Chailapakul, O.; Wonsawat, W.; Siangproh, W.; et al., Analysis of Sudan I, Sudan II, Sudan III, and Sudan IV in food by HPLC with electrochemical detection: Comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode. Food Chemistry2008,109 (4), 876-882
  8. Griffiths, J.; Hawkins, C., Synthesis and photochemical stability of 1-phenylazo-2-naphthol dyes containing insulated singlet oxygen quenching groups. Journal of Applied Chemistry and Biotechnology1977,27 (4), 558-564
  9. Childs, J. J.; Clayson, D. B., The metabolism of 1-phenylazo-2-naphthol in the rabbit. Biochemical Pharmacology1966,15 (9), 1247-1258
  10. 1 2 Stiborova, M.; Asfaw, B.; Anzenbacher, P.; Hodek, P., A New Way To Carcinogenicity Of Azo Dyes - The Benzenediazonium Ion Formed From A Non-Aminoazo Dye, 1-Phenylazo-2-Hydroxynaphthalene (Sudan-I) By Microsomal-Enzymes Binds To Deoxyguanosine Residues Of DNA. Cancer Letters1988,40 (3), 327-333
  11. 1 2 3 Stiborova, M.; Asfaw, B.; Frei, E., Peroxidase-Activated Carcinogenic Azo-Dye Sudan-I (Solvent Yellow-14) Binds To Guanosine In Transfer-Ribonucleic-Acid. General Physiology and Biophysics1995,14 (1), 39-49
  12. 1 2 3 4 Matsumura, S.; Ikeda, N.; Hamada, S.; et al., Repeated-dose liver and gastrointestinal tract micronucleus assays with CI Solvent Yellow 14 (Sudan I) using young adult rats. Mutation research. Genetic toxicology and environmental mutagenesis2015,780-781, 76-80
  13. Lubet, R. A.; Connolly, G.; Kouri, R. E.; et al., Biological effects of the Sudan dyes: role of the Ah cytosolic receptor. Biochemical Pharmacology1983,32 (20), 3053-3058
  14. Stiborova, M.; Frei, E.; Klokow, K.; et al., PEROXIDASE-MEDIATED REACTION OF THE CARCINOGENIC NON-AMINOAZO DYE 1-PHENYLAZO-2-HYDROXYNAPHTHALENE WITH TRANSFER-RIBONUCLEIC-ACID. Carcinogenesis1990,11 (10), 1789-1794
  15. Stiborova, M.; Frei, E.; Schmeiser, H. H.; et al., MECHANISM OF FORMATION AND P-32 POSTLABELING OF DNA ADDUCTS DERIVED FROM PEROXIDATIVE ACTIVATION OF CARCINOGENIC NON-AMINOAZO DYE 1-PHENYLAZO-2-HYDROXYNAPHTHALENE (SUDAN-I). Carcinogenesis1990,11 (10), 1843-1848
  16. Stiborova, M.; Frei, E.; Anzenbacher, P., STUDY ON OXIDATION AND BINDING TO MACROMOLECULES OF THE CARCINOGENIC NON-AMINOAZO DYE 1-PHENYLAZO-2-HYDROXYNAPHTALENE CATALYZED BY HORSERADISH (AMORACIA-RUSTICANA L) PEROXIDASE. Biochemie Und Physiologie Der Pflanzen1991,187 (3), 227-236
  17. Stiborova, M.; Frei, E.; Schmeiser, H. H.; Wiessler, M., P-32 POSTLABELING ANALYSIS OF ADDUCTS FORMED FROM 1-PHENYLAZO-2-HYDROXYNAPHTHALENE (SUDAN I, SOLVENT YELLOW 14) WITH DNA AND HOMOPOLYDEOXYRIBONUCLEOTIDES. Carcinogenesis1992,13 (7), 1221-1225
  18. Stiborova, M.; Frei, E.; Schmeiser, H. H.; et al., DETOXICATION PRODUCTS OF THE CARCINOGENIC AZODYE SUDAN-I (SOLVENT YELLOW 14) BIND TO NUCLEIC-ACIDS AFTER ACTIVATION BY PEROXIDASE. Cancer Letters1993,68 (1), 43-47
  19. 1 2 Stiborova, M.; Schmeiser, H. H.; Breuer, A.; Frei, E., P-32-postlabelling analysis of DNA adducts with 1-(phenylazo)-2-naphthol (Sudan I, Solvent Yellow 14) formed in vivo in Fisher 344 rats. Collection of Czechoslovak Chemical Communications1999,64 (8), 1335-1347
  20. (a) Frederick, C.; Hammons, G.; Beland, F.; et al., N-oxidation of primary aromatic amines in relation to chemical carcinogenesis. Biological Oxidation of Nitrogen in Organic Molecules: Chemistry, Toxicology and Pharmacology (Gorrod JW, Damani LA, eds). England: Ellis Horwood Ltd1985, 131-148
  21. Wise, R. W.; Zenser, T. V.; Kadlubar, F. F.; Davis, B. B., Metabolic activation of carcinogenic aromatic amines by dog bladder and kidney prostaglandin H synthase. Cancer research1984,44 (5), 1893-1897
  22. Eling, T.; Thompson, D.; Foureman, G.; et al., Prostaglandin H synthase and xenobiotic oxidation. Annual review of pharmacology and toxicology1990,30 (1), 1-45
  23. Wanibuchi, H.; Yamamoto, S.; Chen, H.; et al., Promoting effects of dimethylarsinic acid on N-butyl-N-(4-hydroxybutyl) nitrosamine-induced urinary bladder carcinogenesis in rats. Carcinogenesis1996,17 (11), 2435-4239
  24. Stiborová, M.; Martínek, V.; Rýdlová, H.; et al., Sudan I Is a Potential Carcinogen for Humans Evidence for Its Metabolic Activation and Detoxication by Human Recombinant Cytochrome P450 1A1 and Liver Microsomes. Cancer Research2002,62 (20), 5678-5684
  25. Semanska, M.; Dracinsky, M.; Martinek, V.; et al., A one-electron oxidation of carcinogenic nonaminoazo dye Sudan I by horseradish peroxidase. Neuro Endocrinology Letters2008,29 (5), 712-716
  26. Fox, M. R., Dye-makers of Great Britain. 1856-1976: A History of Chemists, Companies, Products and Changes ICI: Manchester, 1987
  27. 1 2 Hunger, K., Toxicology and toxicological testing of colorants. Review of Progress in Coloration and Related Topics2005,35 (1), 76-89
  28. 1 2 http://www.cirs-reach.com/Testing/AZO_Dyes.html (accessed 03-03-2016)
  29. 1 2 Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annex XVII. Commission, E., Ed. 2009
  30. Maronpot, R.; Boorman, G., Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicologic Pathology1982,10 (2), 71-78
  31. Tsuda, S.; Matsusaka, N.; Madarame, H.; et al., The comet assay in eight mouse organs: results with 24 azo compounds. Mutation Research/Genetic Toxicology and Environmental Mutagenesis2000,465 (1), 11-26
  32. Larsen, John Chr. (2008). "Legal and illegal colours". Trends in Food Science & Technology. 19: S64–S69. doi:10.1016/j.tifs.2008.07.008.
  33. Stiborová M, Martínek V, Rýdlová H, et al. (October 2002). "Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes". Cancer Res. 62 (20): 5678–84. PMID   12384524.
  34. "Sudan outraged at namesake dye". BBC. 2005-03-04. Retrieved 2008-09-08.