Enterovirus | |
---|---|
![]() | |
Enterovirus A71 capsid coloured by chains | |
Virus classification ![]() | |
(unranked): | Virus |
Realm: | Riboviria |
Kingdom: | Orthornavirae |
Phylum: | Pisuviricota |
Class: | Pisoniviricetes |
Order: | Picornavirales |
Family: | Picornaviridae |
Genus: | Enterovirus |
Species | |
Enterovirus is a genus of positive-sense single-stranded RNA viruses associated with several human and mammalian diseases. Enteroviruses are named by their transmission-route through the intestine ('enteric' meaning intestinal). [1]
Serologic studies have distinguished 71 human enterovirus serotypes on the basis of antibody neutralization tests. Additional antigenic variants have been defined within several of the serotypes on the basis of reduced or nonreciprocal cross-neutralization between variant strains. On the basis of their pathogenesis in humans and animals, the enteroviruses were originally classified into four groups, polioviruses, Coxsackie A viruses (CA), Coxsackie B viruses (CB), and echoviruses, but it was quickly realized that there were significant overlaps in the biological properties of viruses in the different groups. Enteroviruses isolated more recently are named with a system of consecutive numbers: EV-D68, EV-B69, EV-D70, EV-A71, etc., where genotyping is based on the VP1 capsid region. [2]
Enteroviruses affect millions of people worldwide each year and are often found in the respiratory secretions (e.g., saliva, sputum, or nasal mucus) and stool of an infected person. Historically, poliomyelitis was the most significant disease caused by an enterovirus, namely poliovirus. There are 81 non-polio and 3 polio enteroviruses that can cause disease in humans. Of the 81 non-polio types, there are 22 Coxsackie A viruses, 6 Coxsackie B viruses, 28 echoviruses, and 25 other enteroviruses. [3]
Poliovirus, as well as coxsackie and echovirus, is spread through the fecal–oral route. Infection can result in a wide variety of symptoms, including those of: mild respiratory illness (the common cold), hand, foot and mouth disease, acute hemorrhagic conjunctivitis, aseptic meningitis, myocarditis, severe neonatal sepsis-like disease, acute flaccid paralysis, and the related acute flaccid myelitis. [3]
Enteroviruses are members of the picornavirus family, a large and diverse group of small RNA viruses characterized by a single positive-strand genomic RNA. All enteroviruses contain a genome of approximately 7,500 bases and are known to have a high mutation rate due to low-fidelity replication and frequent recombination. [4] After infection of the host cell, the genome is translated in a cap-independent manner into a single polyprotein, which is subsequently processed by virus-encoded proteases into the structural capsid proteins and the nonstructural proteins, which are mainly involved in the replication of the virus. [5]
RNA recombination appears to be a major driving force in the evolution of enteroviruses as well as in the shaping of their genetic architecture. [6] The mechanism of recombination of the RNA genome likely involves template strand switching during RNA replication, a process known as copy choice recombination. [6] RNA recombination is considered to be an adaptation for dealing with RNA genome damage and a source of genetic diversity. [7] It is also a source of concern for vaccination strategies, because live attenuated/mutated strains used for vaccination could potentially recombine with wild-type related strains, as has been the case with circulating vaccine derived polio viruses (cVDPDs). [8] [9] The capsid region and especially VP1 is a recombination coldspot, and this is one of the main reasons to use this region for genotyping. [2] However, the 5'UTR - capsid junction and the beginning of the P2 region have been observed to recombine very frequently, although recombinations do occur in the rest of the genome as well. Interestingly, the enterovirus species EV-A, EV-B, EV-C, EV-D have not been observed so far to exchange genomic regions among them, with the exception of the 5'UTR. [10]
Enteroviruses are a group of ubiquitous viruses that cause a number of infections which are usually mild. The genus enterovirus includes enteroviruses and rhinoviruses. Enterovirus A include coxsackievirus A2, A3, A4, A5, A6, A7, A8, A10, A12, A14, A16 and enterovirus A71, A76, A89, A90, A91, A92, A144, A119, A120, A121, A122 (simian virus 19), A123 (simian virus 43), A124 (simian virus 46), A125 (baboon enterovirus A13). [11] Some viruses initially reported as novel have been found to be misidentified. Thus, coxsackievirus A23 is the same serotype as echovirus 9, and coxsackievirus A15 is the same serotype as coxsackievirus A11 and coxsackievirus A18 is the same serotype as coxsackievirus A13.[ citation needed ]
Coxsackie A16 virus causes human hand, foot and mouth disease.[ citation needed ]
Enterovirus B includes coxsackievirus B1,2,3,4,5,6; coxsackievirus A9; echovirus 1–33 and enterovirus B69–113. [11] Coxsackie B viruses are found worldwide and can cause myocarditis (inflammation of the heart); pericarditis (inflammation of the sac surrounding the heart); meningitis (inflammation of the membranes that line the brain and spinal cord); and pancreatitis (inflammation of the pancreas). The Coxsackie B viruses are also reported to cause a spastic paralysis due to the degeneration of neuronal tissue and muscle injury. Infections usually occur during warm summer months with symptoms including exanthema, pleurodynia, flu-like illness consisting of fever, fatigue, malaise, myalgia, nausea, abdominal pain and vomiting. [12] Echoviruses are a cause of many of the nonspecific viral infections that can range from minor illness to severe, potentially fatal conditions such as aseptic meningitis, encephalitis, paralysis and myocarditis. [13] It is mainly found in the intestine, and can cause nervous disorders. [14] Type B enteroviruses are responsible for a vast number of mild and acute infections. They have been reported to remain in the body causing persistent infections contributing to chronic diseases such as type I diabetes. [15]
Enterovirus C consists of polioviruses 1,2 and 3; coxsackieviruses A1, A11, A13, A18, A17, 20, A21, A22, A24 and enterovirus C95, C96, C99, C102, C104, C105, C109, C113, C118. The three serotypes of poliovirus, PV-1, PV-2, and PV-3 each have a slightly different capsid protein. Capsid proteins define cellular receptor specificity and virus antigenicity. PV-1 is the most common type to cause infection in humans; however, all three forms are extremely contagious spreading through person-to-person contact. Poliovirus causes Polio, or Poliomyelitis, which is a disabling and life-threatening disease that causes paresthesia, meningitis and permanent paralysis. [16] Symptoms can include sore throat, fever, tiredness, nausea, headache and stomach pain although 72% of those that get infected will not display visible symptoms. [16] There are two types of vaccines available to prevent polio: inactivated poliovirus vaccine given as an injection in the leg (IPV) or arm and oral poliovirus vaccine (OPV). The polio vaccine is highly efficacious giving protection to 99 out of 100 children vaccinated. [16]
Enteroviruses are capable of producing acute infections that are rapidly cleared by the adaptive immune response. [17] [18] However, genomic mutations which enterovirus B serotypes (such as coxsackievirus B and echovirus) may acquire in the host during the acute phase of the infection can transform these viruses into the non-cytolytic form (also known as non-cytopathic or defective enterovirus), a form which is capable of causing persistent low-level infections in human tissues that can last indefinitely. [19]
This persistent non-cytolytic enterovirus is a mutated quasispecies, [17] and such non-cytolytic infections have been found in the pancreas in type 1 diabetes, [20] [21] in chronic myocarditis and dilated cardiomyopathy, [22] [17] [23] in valvular heart disease, [24] in the muscles, intestines and brain in myalgic encephalomyelitis, [25] [26] and in Sjögren's syndrome. [27] In these persistent infections, enteroviral RNA is present at low levels in the tissues (both as single-stranded viral RNA, and in the more immune resistant doubled-stranded RNA form). Some researchers believe this enteroviral RNA is just a remnant of the acute infection, [18] although other scientists believe these persistent intracellular viral RNA infections may have pathological effects, playing a causal role their associated diseases. [28]
EV-D68 first was identified in California in 1962. Compared with other enteroviruses, it has been rarely reported in the U.S. in the past 40 years. Most people who get infected are infants, children, and teens. EV-D68 usually causes mild to severe respiratory illness; however, the full spectrum of EV-D68 illness is not well-defined. Most start with common cold symptoms of runny nose and cough. Some, but not all, may also have fever. For more severe cases, difficulty breathing, wheezing or problems catching your breath may occur. As of October 4, 2014, there has been one death in New Jersey directly linked to EV-D68, [29] as well as one death in Rhode Island[ citation needed ] attributed to a combination of EV-D68 and sepsis caused by an infection of Staphylococcus aureus . [30] [31]
Enterovirus A71 (EV-A71) is notable as one of the major causative agents for hand, foot and mouth disease (HFMD), and is sometimes associated with severe central nervous system diseases. [32] EV-A71 was first isolated and characterized from cases of neurological disease in California in 1969. [33] [34] To date, little is known about the molecular mechanisms of host response to EV-A71 infection, but increases in the level of mRNAs encoding chemokines, proteins involved in protein degradation, complement proteins, and proapoptotis proteins have been implicated. [35]
There are three serotypes of poliovirus, PV-1, PV-2, and PV-3; each with a slightly different capsid protein. Capsid proteins define cellular receptor specificity and virus antigenicity. PV-1 is the most common form encountered in nature; however, all three forms are extremely infectious. [36] Poliovirus can affect the spinal cord and cause poliomyelitis.
Polioviruses were formerly classified as a species belonging to the genus Enterovirus in the family Picornaviridae. The Poliovirus species has been eliminated from the genus Enterovirus. The following serotypes, Human poliovirus 1, Human poliovirus 2, and Human poliovirus 3, were assigned to the species Human enterovirus C, in the genus Enterovirus in the family Picornaviridae. The type species of the genus Enterovirus was changed from Poliovirus to Human enterovirus C. This has been ratified in April 2008. [37] The 39th Executive Committee (EC39) of the International Committee on Taxonomy of Viruses (ICTV) met in Canada during June 2007 with new taxonomic proposals. [38]
Two of the proposals with three changes were:
Proposals approved at the (EC39) meeting of 2007, were sent to members of ICTV via email for ratification and have become official taxonomy. There have been a total of 215 taxonomic proposals, which have been approved and ratified since the 8th ICTV Report of 2005. [41]
The ratification process was performed by email. The proposals were sent electronically via email on March 18, 2008, to ICTV members with a request to vote on whether to ratify the taxonomic proposals, with a 1-month deadline. The following are two of the taxonomic proposals with three changes that were ratified by ICTV members in April 2008:
Picornaviruses
Enteroviruses cause a wide range of symptoms, and while their long list of signs and symptoms should put them on the differential diagnosis list of many illnesses, they often go unnoticed. Enteroviruses can cause anything from rashes in small children, to summer colds, to encephalitis, to blurred vision, to pericarditis. Enteroviral infections have a great range in presentation and seriousness. Non polio enteroviruses cause 10–15 million infections and tens of thousands of hospitalizations in the US each year. [43] Enteroviruses can be identified through cell culture or PCR assay, collected from fecal or respiratory specimens. [44] Below are common enterovirus related diseases, including poliomyelitis.
Encephalitis lethargica, the 1917–1926 "sleeping sickness". [52]
Enterovirus has been speculated to be connected with Type 1 diabetes. [53] [54] [55] [56] It has been proposed that type 1 diabetes is a virus-triggered autoimmune response in which the immune system attacks virus-infected cells along with the insulin-producing beta cells in the pancreas. [57] A team working at University of Tampere, Finland identified the enterovirus Coxsackievirus B1 as possibly linked to type 1 diabetes (which is an autoimmune disease). [58] [59]
Enteroviruses, including polioviruses, may be a cause of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). [60]
Most people who contract enterovirus have mild symptoms lasting about a week. Those with higher risk may have more complications, sometimes becoming fatal. [61] The most common sign of enterovirus is a common cold. More intense symptoms of enterovirus include hypoxia, aseptic meningitis, conjunctivitis, hand, foot and mouth disease, and paralysis.
Treatment for enteroviral infection is mainly supportive. In cases of pleurodynia, treatment consists of analgesics to relieve the severe pain that occurs in patients with the disease; in some severe cases, opiates may be needed. Treatment for aseptic meningitis caused by enteroviruses is also mainly symptomatic. In patients with enteroviral carditis, treatment consists of the prevention and treatment of complications such as arrhythmias, pericardial effusion, and cardiac failure. Other treatments that have been investigated for enteroviral carditis include intravenous immunoglobulin. [62]
The enterovirus genus includes the following fifteen species: [64]
These fifteen species' serotype include:
Coxsackie A virus (CAV) is a cytolytic Coxsackievirus of the Picornaviridae family, an enterovirus.
The rhinovirus is a positive-sense, single-stranded RNA virus belonging to the genus Enterovirus in the family Picornaviridae. Rhinovirus is the most common viral infectious agent in humans and is the predominant cause of the common cold.
Coxsackie B4 virus are enteroviruses that belong to the Picornaviridae family. These viruses can be found worldwide. They are positive-sense, single-stranded, non-enveloped RNA viruses with icosahedral geometry. Coxsackieviruses have two groups, A and B, each associated with different diseases. Coxsackievirus group A is known for causing hand-foot-and-mouth diseases while Group B, which contains six serotypes, can cause a varying range of symptoms like gastrointestinal distress myocarditis. Coxsackievirus B4 has a cell tropism for natural killer cells and pancreatic islet cells. Infection can lead to beta cell apoptosis which increases the risk of insulitis.
Coxsackieviruses are a few related enteroviruses that belong to the Picornaviridae family of nonenveloped, linear, positive-sense single-stranded RNA viruses, as well as its genus Enterovirus, which also includes poliovirus and echovirus. Enteroviruses are among the most common and important human pathogens, and ordinarily its members are transmitted by the fecal–oral route. Coxsackieviruses share many characteristics with poliovirus. With control of poliovirus infections in much of the world, more attention has been focused on understanding the nonpolio enteroviruses such as coxsackievirus.
Coxsackie B is a group of six serotypes of coxsackievirus (CVB1-CVB6), a pathogenic enterovirus, that trigger illness ranging from gastrointestinal distress to full-fledged pericarditis and myocarditis.
Poliovirus, the causative agent of polio, is a serotype of the species Enterovirus C, in the family of Picornaviridae. There are three poliovirus serotypes, numbered 1, 2, and 3.
Picornaviruses are a group of related nonenveloped RNA viruses which infect vertebrates including fish, mammals, and birds. They are viruses that represent a large family of small, positive-sense, single-stranded RNA viruses with a 30 nm icosahedral capsid. The viruses in this family can cause a range of diseases including the common cold, poliomyelitis, meningitis, hepatitis, and paralysis.
Cardiovirus are a group of viruses within order Picornavirales, family Picornaviridae. Vertebrates serve as natural hosts for these viruses.
Pleconaril (Picovir) is an antiviral drug that was being developed by Schering-Plough for prevention of asthma exacerbations and common cold symptoms in patients exposed to picornavirus respiratory infections. Pleconaril, administered either orally or intranasally, is active against viruses in the Picornaviridae family, including Enterovirus and Rhinovirus. It has shown useful activity against the dangerous enterovirus D68.
Vincent R. Racaniello is a Higgins Professor in the Department of Microbiology and Immunology at Columbia University's College of Physicians and Surgeons. He is a co-author of a textbook on virology, Principles of Virology.
Enterovirus 71 (EV71), also known as Enterovirus A71 (EV-A71), is a virus of the genus Enterovirus in the Picornaviridae family, notable for its role in causing epidemics of severe neurological disease and hand, foot, and mouth disease in children. It was first isolated and characterized from cases of neurological disease in California in 1969. Enterovirus 71 infrequently causes polio-like syndrome permanent paralysis.
Enterovirus E is a picornavirus of the genus Enterovirus. The virus may also be referred to as enteric cytopathic bovine orphan virus (ECBO). It is endemic in cattle populations worldwide, and although normally fairly nonpathogenic, it can cause reproductive, respiratory, or enteric disease – particularly when the animal is concurrently infected with another pathogen.
Coxsackieviruses-induced cardiomyopathy are positive-stranded RNA viruses in picornavirus family and the genus enterovirus, acute enterovirus infections such as Coxsackievirus B3 have been identified as the cause of virally induced acute myocarditis, resulting in dilated cardiomyopathy. Dilated cardiomyopathy in humans can be caused by multiple factors including hereditary defects in the cytoskeletal protein dystrophin in Duchenne muscular dystrophy (DMD) patients). A heart that undergoes dilated cardiomyopathy shows unique enlargement of ventricles, and thinning of the ventricular wall that may lead to heart failure. In addition to the genetic defects in dystrophin or other cytoskeletal proteins, a subset of dilated cardiomyopathy is linked to enteroviral infection in the heart, especially coxsackievirus B. Enterovirus infections are responsible for about 30% of the cases of acquired dilated cardiomyopathy in humans.
Picornain 3C is a protease found in picornaviruses, which cleaves peptide bonds of non-terminal sequences. Picornain 3C’s endopeptidase activity is primarily responsible for the catalytic process of selectively cleaving Gln-Gly bonds in the polyprotein of poliovirus and with substitution of Glu for Gln, and Ser or Thr for Gly in other picornaviruses. Picornain 3C are cysteine proteases related by amino acid sequence to trypsin-like serine proteases. Picornain 3C is encoded by enteroviruses, rhinoviruses, aphtoviruses and cardioviruses. These genera of picoviruses cause a wide range of infections in humans and mammals.
Acute hemorrhagic conjunctivitis (AHC) is a derivative of the highly contagious conjunctivitis virus, otherwise known as pink eye. Symptoms include excessively red, swollen eyes as well as subconjunctival hemorrhaging. Currently, there is no known treatment and patients are required to merely endure the symptoms while the virus runs its five- to seven-day course. While it was first identified in Ghana, the virus has now been seen in China, India, Egypt, Cuba, Singapore, Taiwan, Japan, Pakistan, Thailand, and the United States.
Enterovirus C is a species of enterovirus. Its best known subtype is poliovirus, the cause of poliomyelitis. There are three serotypes of poliovirus, PV1, PV2, and PV3. Other subtypes of Enterovirus C include EV-C95, EV-C96, EV-C99, EV-C102, EV-C104, EV-C105, EV-C109, EV-C116, EV-C117, and EV-C118. Some non-polio types of Enterovirus C have been associated with the polio-like condition AFP, including 2 isolates of EV-C95 from Chad.
Enterovirus D68 (EV-D68) is a member of the Picornaviridae family, an enterovirus. First isolated in California in 1962 and once considered rare, it has been on a worldwide upswing in the 21st century. It is suspected of causing a polio-like disorder called acute flaccid myelitis (AFM).
Echovirus 9 is a serotype of echovirus. When first discovered, it was labelled as a coxsackie A virus, A23. It was later discovered that A23 was an echovirus antigenically identical to the already-known echovirus 9.
Acute flaccid myelitis (AFM) is a serious condition of the spinal cord. Symptoms include rapid onset of arm or leg weakness and decreased reflexes. Difficulty moving the eyes, speaking, or swallowing may also occur. Occasionally, numbness or pain may be present. Complications can include trouble breathing.
The 1997 Sarawak HFMD outbreak is a hand, foot, and mouth disease (HFMD) outbreak from April until June caused by the Enterovirus 71 (EV-71) affecting 600 children in the state of Sarawak in Malaysia. Sarawak is the first state in Malaysia that reported HFMD outbreak. An estimated 28 to 31 of the infected children died as a result. The affected children are aged between five months to six years.
Derivation of names Entero: from Greek enteron, 'intestine'[ dead link ]
{{cite book}}
: CS1 maint: others (link)