Alphaspiravirus | |
---|---|
Virus classification | |
(unranked): | Virus |
Family: | Spiraviridae |
Genus: | Alphaspiravirus |
Species | |
| |
Synonyms | |
|
Spiraviridae is a family of incertae sedis viruses that replicate in hyperthermophilic archaea of the genus Aeropyrum , specifically Aeropyrum pernix . [1] The family contains one genus, Alphaspiravirus, which contains one species, Aeropyrum coil-shaped virus. [2] The virions of ACV are non-enveloped and in the shape of hollow cylinders that are formed by a coiling fiber that consists of two intertwining halves of the circular DNA strand inside a capsid. An appendage protrudes from each end of the cylindrical virion. The viral genome is ssDNA(+) and encodes for significantly more genes than other known ssDNA viruses. ACV is also unique in that it appears to lack its own enzymes to aid replication, instead likely using the host cell's replisomes. ACV has no known relation to any other archaea-infecting viruses, but it does share its coil-like morphology with some other archaeal viruses, suggesting that such viruses may be an ancient lineage that only infect archaea. [1] [3]
The names Alpaspiravirus and Spiraviridae are both from latin spira for "coil". [4]
Virions of ACV are non-enveloped and in the shape of hollow cylinders approximately 230±10 by 19±1 nanometers (nm) in size. The cylindrical shape is formed by the coiling of a nucleoprotein filament as a helical spring. This coil-like structure is itself formed by two intertwining halves of a circular, ssDNA molecule in another helical shape that is covered by capsid proteins. Each end of the cylindrical virion has an appendage about 20±2 nm in length protruding from the virion at a 45° angle relative to the axis of the virion. [1] For about 80% of virions, the appendages protrude from the same face of the virion. [3] The virion is flexible, capable of contracting and stiffening upon being dehydrated. Virions have two major proteins with molecular masses of about 23 and 18.5 kilodaltons (kDa) and a few minor proteins with molecular masses of 5–13 kDa. [1] Approximately 40 discs or turns of the helix are distinguishable for the length of the virion. [3] The coil-like morphology of ACV is characteristic of certain archaeal viruses, not being found among bacterial and eukaryotic viruses. [1]
ACV contains a single molecule of circular, positive-sense, single-stranded DNA ((+)ssDNA) that is 24,893 nucleotides in length. The GC-content of the genome is 46.7%. The genome is predicted to have 57 open reading frames (ORFs) larger than 40 codons, such ORFs comprising 93.5% of the genome. All but one ORF has the same directionality as the DNA strand, indicating that the genome is positive-sense. The number of predicted genes is much greater than other known ssDNA viruses. These include genes that encode for a putative trypsin-like serine protease, a tyrosine recombinase, two thioredoxin-like proteins, proteins involved in carbohydrate metabolism, and DNA-binding proteins. [1]
ACV does not encode any identifiable DNA or RNA polymerases, nor does it encode any proteins homologous to known Rep proteins used by most known ssDNA viruses in replication. As such, ACV is likely to replicate in a manner that depends on the host replisome. After replication, virions leave the host cell without the host cell undergoing lysis, or cell death. [1]
ACV has no known relation to any other viruses. However, some other archaeal viruses also have coil-shaped virions like ACV, which may indicate such morphology is an ancient form that is not represented among viruses that infect eukaryotes and other prokaryotes. [1]
ACV was first isolated from a sample of Aeropyrum pernix (A. pernix) taken from the coastal Yamagawa Hot Spring, where the temperature can reach 109 °C, in Japan in 2010. As A. pernix was the only organism present in the culture, it was recognized as the host of ACV. ACV could not be replicated in other strains of A. pernix or in Aeropyrum camini , so the original A. pernix culture was used for study. [3] The family, genus, and species were recognized by the ICTV in 2013. [2]
Baltimore classification is a system used to classify viruses based on their manner of messenger RNA (mRNA) synthesis. By organizing viruses based on their manner of mRNA production, it is possible to study viruses that behave similarly as a distinct group. Seven Baltimore groups are described that take into consideration whether the viral genome is made of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), whether the genome is single- or double-stranded, and whether the sense of a single-stranded RNA genome is positive or negative.
Tectiviridae is a family of viruses with 10 species in five genera. Bacteria serve as natural hosts. Tectiviruses have no head-tail structure, but are capable of producing tail-like tubes of ~ 60×10 nm upon adsorption or after chloroform treatment. The name is derived from Latin tectus.
Icerudivirus is a genus of viruses in the family Rudiviridae. These viruses are non-enveloped, stiff-rod-shaped viruses with linear dsDNA genomes, that infect hyperthermophilic archaea of the species Sulfolobus islandicus. There are three species in the genus.
Lipothrixviridae is a family of viruses in the order Ligamenvirales. Thermophilic archaea in the phylum Thermoproteota serve as natural hosts. There are 11 species in this family, assigned to 4 genera.
Fuselloviridae is a family of viruses. Sulfolobus species, specifically shibatae, solfataricus, and islandicus, serve as natural hosts. There are two genera and nine species in the family. The Fuselloviridae are ubiquitous in high-temperature (≥70 °C), acidic hot springs around the world.
Guttaviridae is a family of viruses. Archaea serve as natural hosts. There are two genera in this family, containing one species each. The name is derived from the Latin gutta, meaning 'droplet'.
Bottigliavirus is the only genus in the family Ampullaviridae and contains 3 species. Ampullaviridae infect archaea of the genus Acidianus. The name of the family and genus is derived from the Latin word for bottle, ampulla, due to the virions having the shape of a bottle. The family was first described during an investigation of the microbial flora of hot springs in Italy.
Bicaudaviridae is a family of hyperthermophilic archaeal viruses. Members of the genus Acidianus serve as natural hosts. There is only one genus, Bicaudavirus, and one species, Acidianus two-tailed virus, in this family. However, Sulfolobus tengchongensis spindle-shaped viruses 1 and 2 are regarded to belong to this family also.
Clavaviridae is a family of double-stranded viruses that infect archaea. This family was first described by the team led by D. Prangishvili in 2010. There is one genus in this family (Clavavirus). Within this genus, a single species has been described to date: Aeropyrum pernix bacilliform virus 1 (APBV1).
David Prangishvili is a virologist, Professor at the Pasteur Institute of Paris, and foremost authority on viruses infecting Archaea.
Yingchengvirus is a genus of double stranded DNA viruses that infect haloarchaea. The genus was previously named Betasphaerolipovirus.
Alphafusellovirus is a genus of viruses, in the family Fuselloviridae. Species in the genus Sulfolobus serve as natural hosts. There are seven species in this genus.
Tristromaviridae is a family of viruses. Archaea of the genera Thermoproteus and Pyrobaculum serve as natural hosts. Tristromaviridae is the sole family in the order Primavirales. There are two genera and three species in the family.
Sulfolobus islandicus rod-shaped virus 2, also referred to as SIRV2, is an archaeal virus whose only known host is the archaeon Sulfolobus islandicus. This virus belongs to the family Rudiviridae. Like other viruses in the family, it is common in geothermal environments.
Sulfolobus islandicus filamentous virus (SIFV) is an archaeal virus, classified in the family Lipothrixviridae within the order Ligamenvirales. The virus infects hypethermophilic and acidophilic archaeon Sulfolobus islandicus.
In virology, realm is the highest taxonomic rank established for viruses by the International Committee on Taxonomy of Viruses (ICTV), which oversees virus taxonomy. Six virus realms are recognized and united by specific highly conserved traits:
An archaeal virus is a virus that infects and replicates in archaea, a domain of unicellular, prokaryotic organisms. Archaeal viruses, like their hosts, are found worldwide, including in extreme environments inhospitable to most life such as acidic hot springs, highly saline bodies of water, and at the bottom of the ocean. They have been also found in the human body. The first known archaeal virus was described in 1974 and since then, a large diversity of archaeal viruses have been discovered, many possessing unique characteristics not found in other viruses. Little is known about their biological processes, such as how they replicate, but they are believed to have many independent origins, some of which likely predate the last archaeal common ancestor (LACA).
Portogloboviridae is a family of dsDNA viruses that infect archaea. It is a proposed family of the realm Varidnaviria, but ICTV officially puts it as incertae sedis virus. Viruses in the family are related to Helvetiavirae. The capsid proteins of these viruses and their characteristics are of evolutionary importance for the origin of the other Varidnaviria viruses since they seem to retain primordial characters.
Thaspiviridae is a family of incertae sedis spindle-shaped viruses. The family contains a single genus, Nitmarvirus, which contains a single species, Nitmarvirus NSV1.
Adnaviria is a realm of viruses that includes archaeal viruses that have a filamentous virion and a linear, double-stranded DNA genome. The genome exists in A-form (A-DNA) and encodes a dimeric major capsid protein (MCP) that contains the SIRV2 fold, a type of alpha-helix bundle containing four helices. The virion consists of the genome encased in capsid proteins to form a helical nucleoprotein complex. For some viruses, this helix is surrounded by a lipid membrane called an envelope. Some contain an additional protein layer between the nucleoprotein helix and the envelope. Complete virions are long and thin and may be flexible or a stiff like a rod.