Mononegavirales

Last updated
Mononegavirales
Fmicb-10-01490-g001.jpg
Vesicular stomatitis virus (VSV) virion and Mononegavirales genomes
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Negarnaviricota
Class: Monjiviricetes
Order:Mononegavirales
Families

see text

Mononegavirales is an order of negative-strand RNA viruses which have nonsegmented genomes. Some members that cause human disease in this order include Ebola virus, human respiratory syncytial virus, measles virus, mumps virus, Nipah virus, and rabies virus. Important pathogens of nonhuman animals and plants are also in the group. The order includes eleven virus families: Artoviridae , Bornaviridae , Filoviridae , Lispiviridae, Mymonaviridae , Nyamiviridae , Paramyxoviridae , Pneumoviridae , Rhabdoviridae , Sunviridae , and Xinmoviridae. [1]

Contents

Use of term

The order Mononegavirales (pronounced: /ˌmɒnəˌnɛɡəviˈrɑːlɪz/ MON-ə-NEG-ə-vee-RAH-liz) [note 1] [2] [3] is a virological taxon that was created in 1991 [4] [5] and amended in 1995, [6] 1997, [7] 2000, [8] 2005, [9] 2011, [2] 2016, [10] 2017, [11] and 2018. [1] The name Mononegavirales is derived from the Ancient Greek adjective μóνοςmonos (alluding to the monopartite and single-stranded genomes of most mononegaviruses), the Latin verb negare (alluding to the negative polarity of these genomes), and the taxonomic suffix -virales (denoting a viral order). [3]

Order inclusion criteria

The genome organization and RNA synthesis of order Mononegavirales Doi.10.1128.JVI.00175-20.F1.large.jpg
The genome organization and RNA synthesis of order Mononegavirales

A virus is a member of the order Mononegavirales if [2] [3]

Life cycle

Life cycle of vesiculoviruses DOI 10 5772 54598 image2.jpg
Life cycle of vesiculoviruses

The mononegavirus life cycle begins with virion attachment to specific cell-surface receptors, followed by fusion of the virion envelope with cellular membranes and the concomitant release of the virus nucleocapsid into the cytosol. The virus RdRp partially uncoats the nucleocapsid and transcribes the genes into positive-stranded mRNAs, which are then translated into structural and nonstructural proteins. [9]

Mononegavirus RdRps bind to a single promoter located at the 3' end of the genome. Transcription either terminates after a gene or continues to the next gene downstream. This means that genes close to the 3' end of the genome are transcribed in the greatest abundance, whereas those toward the 5' end are least likely to be transcribed. The gene order is therefore a simple but effective form of transcriptional regulation. The most abundant protein produced is the nucleoprotein, whose concentration in the cell determines when the RdRp switches from gene transcription to genome replication. [9]

Replication results in full-length, positive-stranded antigenomes that are in turn transcribed into negative-stranded virus progeny genome copies. Newly synthesized structural proteins and genomes self-assemble and accumulate near the inside of the cell membrane. Virions bud off from the cell, gaining their envelopes from the cellular membrane they bud from. The mature progeny particles then infect other cells to repeat the cycle. [9]

Paleovirology

Mononegaviruses have a history that dates back several tens of million of years. Mononegavirus "fossils" have been discovered in the form of mononegavirus genes or gene fragments integrated into mammalian genomes. For instance, bornavirus gene "fossils" have been detected in the genomes of bats, fish, hyraxes, marsupials, primates, rodents, ruminants, and elephants. [12] [13] [14] [15] [16] Filovirus gene "fossils" have been detected in the genomes of bats, rodents, shrews, tenrecs, and marsupials. [13] [14] [17] [18] A Midway virus "fossil" was found in the genome of zebrafish. [13] Finally, rhabdovirus "fossils" were found in the genomes of crustaceans, mosquitoes, ticks, and plants. [19] [14] [20] [21]

Taxonomy

Mononegavirales phylogenetic tree Fmicb-10-01490-g013.jpg
Mononegavirales phylogenetic tree

The order has eleven families that include numerous genera, which consist of many different species:[ citation needed ]

Table of the order showing all families, genera, species, and their viruses: [1]

Table legend: "*" denotes type species.

Notes

  1. According to the rules for taxon naming established by the International Committee on Taxonomy of Viruses (ICTV), the name Mononegavirales is always to be capitalized, italicized, and never abbreviated. The names of the order's physical members ("mononegaviruses" or "mononegavirads") are to be written in lower case, are not italicized, and used without articles.

Related Research Articles

<span class="mw-page-title-main">RNA virus</span> Subclass of viruses

An RNA virus is a virus—other than a retrovirus—that has ribonucleic acid (RNA) as its genetic material. The nucleic acid is usually single-stranded RNA (ssRNA) but it may be double-stranded (dsRNA). Notable human diseases caused by RNA viruses include the common cold, influenza, SARS, MERS, COVID-19, Dengue virus, hepatitis C, hepatitis E, West Nile fever, Ebola virus disease, rabies, polio, mumps, and measles.

<i>Filoviridae</i> Family of viruses in the order Mononegavirales

Filoviridae is a family of single-stranded negative-sense RNA viruses in the order Mononegavirales. Two members of the family that are commonly known are Ebola virus and Marburg virus. Both viruses, and some of their lesser known relatives, cause severe disease in humans and nonhuman primates in the form of viral hemorrhagic fevers.

<i>Henipavirus</i> Genus of RNA viruses

Henipavirus is a genus of negative-strand RNA viruses in the family Paramyxoviridae, order Mononegavirales containing six established species, and numerous others still under study. Henipaviruses are naturally harboured by several species of small mammals, notably pteropid fruit bats, microbats of several species, and shrews. Henipaviruses are characterised by long genomes and a wide host range. Their recent emergence as zoonotic pathogens capable of causing illness and death in domestic animals and humans is a cause of concern.

<i>Bornaviridae</i> Family of viruses

Bornaviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Horses, sheep, cattle, rodents, birds, reptiles, and humans serve as natural hosts. Diseases associated with bornaviruses include Borna disease, a fatal neurologic disease of mammals restricted to central Europe; and proventricular dilatation disease (PDD) in birds. Bornaviruses may cause encephalitis in mammals like horses or sheep. The family includes 11 species assigned to three genera.

<i>Lyssavirus</i> Genus of viruses

Lyssavirus is a genus of RNA viruses in the family Rhabdoviridae, order Mononegavirales. Mammals, including humans, can serve as natural hosts. The genus Lyssavirus includes the rabies virus traditionally associated with the disease of the same name.

<i>Marburgvirus</i> Genus of virus

The genus Marburgvirus is the taxonomic home of Marburg marburgvirus, whose members are the two known marburgviruses, Marburg virus (MARV) and Ravn virus (RAVV). Both viruses cause Marburg virus disease in humans and nonhuman primates, a form of viral hemorrhagic fever. Both are select agents, World Health Organization Risk Group 4 Pathogens, National Institutes of Health/National Institute of Allergy and Infectious Diseases Category A Priority Pathogens, Centers for Disease Control and Prevention Category A Bioterrorism Agents, and are listed as Biological Agents for Export Control by the Australia Group.

<i>Ebolavirus</i> Genus of virus

The genus Ebolavirus is a virological taxon included in the family Filoviridae, order Mononegavirales. The members of this genus are called ebolaviruses, and encode their genome in the form of single-stranded negative-sense RNA. The six known virus species are named for the region where each was originally identified: Bundibugyo ebolavirus, Reston ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, Zaire ebolavirus, and Bombali ebolavirus. The last is the most recent species to be named and was isolated from Angolan free-tailed bats in Sierra Leone. Each species of the genus Ebolavirus has one member virus, and four of these cause Ebola virus disease (EVD) in humans, a type of hemorrhagic fever having a very high case fatality rate. The Reston virus has caused EVD in other primates. Zaire ebolavirus has the highest mortality rate of the ebolaviruses and is responsible for the largest number of outbreaks of the six known species of the genus, including the 1976 Zaire outbreak and the outbreak with the most deaths (2014).

<i>Vesiculovirus</i> Genus of viruses

Vesiculovirus is a genus of negative-sense single-stranded RNA viruses in the family Rhabdoviridae, within the order Mononegavirales.

<i>Novirhabdovirus</i> Genus of viruses

Novirhabdovirus is a genus of the family Rhabdoviridae containing viruses known to infect aquatic hosts. They can be transmitted from fish to fish or by waterborne virus, as well as through contaminated eggs. Replication and thermal inactivation temperatures are generally lower than for other rhabdoviruses, given the cold-blooded nature of their hosts. Hosts include a large and growing range of marine and freshwater fish.

<i>Picornavirales</i> Order of viruses

Picornavirales is an order of viruses with vertebrate, invertebrate, protist and plant hosts. The name has a dual etymology. First, picorna- is an acronym for poliovirus, insensitivity to ether, coxsackievirus, orphan virus, rhinovirus, and ribonucleic acid. Secondly, pico-, meaning extremely small, combines with RNA to describe these very small RNA viruses. The order comprises viruses that historically are referred to as picorna-like viruses.

The species Lloviu cuevavirus is the taxonomic home of a virus that forms filamentous virion, Lloviu virus (LLOV). The species is included in the genus Cuevavirus. LLOV is a distant relative of the commonly known Ebola virus and Marburg virus.

The species Taï Forest ebolavirus is a virological taxon included in the genus Ebolavirus, family Filoviridae, order Mononegavirales. The species has a single virus member, Taï Forest virus (TAFV). The members of the species are called Taï Forest ebolaviruses.

<i>Zaire ebolavirus</i> Species of virus affecting humans and animals

Zaire ebolavirus, more commonly known as Ebola virus, is one of six known species within the genus Ebolavirus. Four of the six known ebolaviruses, including EBOV, cause a severe and often fatal hemorrhagic fever in humans and other mammals, known as Ebola virus disease (EVD). Ebola virus has caused the majority of human deaths from EVD, and was the cause of the 2013–2016 epidemic in western Africa, which resulted in at least 28,646 suspected cases and 11,323 confirmed deaths.

<i>Nyamiviridae</i> Family of viruses

Nyamiviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Ecdysozoa and birds serve as natural hosts. The name is a portmanteau of Nyamanini Pan and Midway Atoll and the suffix -viridae used to denote a virus family. There are seven genera in this family.

Aquaparamyxovirus is a genus of viruses in the family Paramyxoviridae, order Mononegavirales. The genus includes two species. Fish serve as the natural hosts for AsaPV, in which the virus may cause proliferative gill inflammation.

Ferlavirus, also referred to as Ophidian paramyxovirus, is a genus of viruses in the family Paramyxoviridae, order Mononegavirales. Reptiles serve as natural hosts. There is currently only one species in this genus to accommodate a single virus, Fer-de-Lance virus (FDLV).

Perhabdovirus is a genus of viruses in the family Rhabdoviridae, order Mononegavirales. Fish serve as natural hosts. Diseases associated with viruses of this genus include: breathing and swimming problems.

Sprivivirus is a genus of viruses in the family Rhabdoviridae, order Mononegavirales. Fish serve as natural hosts.

<i>Mymonaviridae</i> Family of viruses

Mymonaviridae is a family of negative-strand RNA viruses in the order Mononegavirales, which infect fungi. Fungi serve as natural hosts. The name is a portmanteau of Ancient Greek myco, which means fungus, and mononegavirales. This family was established to accommodate Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV-1) a novel virus discovered in a hypovirulent strain of Sclerotinia sclerotiorum.

<i>Pneumoviridae</i> Family of viruses

Pneumoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Humans, cattle, and rodents serve as natural hosts. Respiratory tract infections are associated with member viruses such as human respiratory syncytial virus. There are five species in the family which are divided between the genera Metapneumovirus and Orthopneumovirus. The family used to be considered as a sub-family of Paramyxoviridae, but has been reclassified as of 2016.

References

  1. 1 2 3 Amarasinghe GK, Aréchiga Ceballos NG, Banyard AC, Basler CF, Bavari S, Bennett AJ, et al. (April 2018). "Taxonomy of the order Mononegavirales: update 2018". Archives of Virology. 163 (8): 2283–2294. doi:10.1007/s00705-018-3814-x. PMC   6076851 . PMID   29637429.
  2. 1 2 3 Easton A, Pringle CR (2011). "Order Mononegavirales". In King AM, Adams MJ, Carstens EB, Lefkowitz EJ (eds.). Virus Taxonomy—Ninth Report of the International Committee on Taxonomy of Viruses . London, UK: Elsevier/Academic Press. pp.  653–657. ISBN   978-0-12-384684-6.
  3. 1 2 3 Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, et al. (December 2010). "Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations". Archives of Virology. 155 (12): 2083–103. doi:10.1007/s00705-010-0814-x. PMC   3074192 . PMID   21046175.
  4. Pringle CR (1991). "The order Mononegavirales". Archives of Virology. 117 (1–2): 137–40. doi: 10.1007/BF01310499 . PMID   2006902. S2CID   312908.
  5. Pringle CR (1991). "Order Mononegavirales". In Francki RI, Fauquet CM, Knudson DK, Brown F (eds.). Classification and Nomenclature of Viruses-Fifth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplement, vol. 2. Vienna, Austria: Springer. pp. 239–41. ISBN   978-0-387-82286-0.
  6. Bishop DH, Pringle CR (1995). "Order Mononegavirales". In Murphy FA, Fauquet CM, Bishop DH, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers DM (eds.). Virus Taxonomy—Sixth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplement. Vol. 10. Vienna, Austria: Springer. pp. 265–267. ISBN   978-3-211-82594-5.
  7. Pringle CR (1997). "The order Mononegavirales--current status". Archives of Virology. 142 (11): 2321–6. PMID   9672597.
  8. Pringle CR (2000). "Order Mononegavirales". In van Regenmortel MK, Fauquet CM, Bishop DH, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds.). Virus Taxonomy—Seventh Report of the International Committee on Taxonomy of Viruses. San Diego, USA: Academic Press. pp. 525–530. ISBN   978-0-12-370200-5.
  9. 1 2 3 4 Pringle CR (2005). "Order Mononegavirales". In Fauquet CM, Mayo M, Maniloff J, Desselberger U, Ball LA (eds.). Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, USA: Elsevier/Academic Press. pp. 609–614. ISBN   978-0-12-370200-5.
  10. Afonso CL, Amarasinghe GK, Bányai K, Bào Y, Basler CF, Bavari S, et al. (August 2016). "Taxonomy of the order Mononegavirales: update 2016". Archives of Virology. 161 (8): 2351–60. doi:10.1007/s00705-016-2880-1. PMC   4947412 . PMID   27216929.
  11. Amarasinghe GK, Bào Y, Basler CF, Bavari S, Beer M, Bejerman N, et al. (August 2017). "Taxonomy of the order Mononegavirales: update 2017". Archives of Virology. 162 (8): 2493–2504. doi:10.1007/s00705-017-3311-7. PMC   5831667 . PMID   28389807.
  12. Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T, Oshida T, et al. (January 2010). "Endogenous non-retroviral RNA virus elements in mammalian genomes". Nature. 463 (7277): 84–7. Bibcode:2010Natur.463...84H. doi:10.1038/nature08695. PMC   2818285 . PMID   20054395.
  13. 1 2 3 Belyi VA, Levine AJ, Skalka AM (July 2010). Buchmeier MJ (ed.). "Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes". PLOS Pathogens. 6 (7): e1001030. doi: 10.1371/journal.ppat.1001030 . PMC   2912400 . PMID   20686665.
  14. 1 2 3 Katzourakis A, Gifford RJ (November 2010). Malik HS (ed.). "Endogenous viral elements in animal genomes". PLOS Genetics. 6 (11): e1001191. doi: 10.1371/journal.pgen.1001191 . PMC   2987831 . PMID   21124940.
  15. Cui J, Wang LF (November 2015). "Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats". Viruses. 7 (11): 5792–800. doi: 10.3390/v7112906 . PMC   4664979 . PMID   26569285.
  16. Horie M, Tomonaga K (April 2018). "Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses". Virus Research. 262: 2–9. doi:10.1016/j.virusres.2018.04.006. PMID   29630909. S2CID   4776419.
  17. Taylor DJ, Leach RW, Bruenn J (June 2010). "Filoviruses are ancient and integrated into mammalian genomes". BMC Evolutionary Biology. 10 (1): 193. Bibcode:2010BMCEE..10..193T. doi: 10.1186/1471-2148-10-193 . PMC   2906475 . PMID   20569424.
  18. Taylor DJ, Dittmar K, Ballinger MJ, Bruenn JA (November 2011). "Evolutionary maintenance of filovirus-like genes in bat genomes". BMC Evolutionary Biology. 11 (1): 336. Bibcode:2011BMCEE..11..336T. doi: 10.1186/1471-2148-11-336 . PMC   3229293 . PMID   22093762.
  19. Metegnier G, Becking T, Chebbi MA, Giraud I, Moumen B, Schaack S, et al. (2015). "Comparative paleovirological analysis of crustaceans identifies multiple widespread viral groups". Mobile DNA. 6: 16. doi: 10.1186/s13100-015-0047-3 . PMC   4573495 . PMID   26388953.
  20. Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W, Kanematsu S, et al. (July 2011). Nagy PD (ed.). "Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes". PLOS Pathogens. 7 (7): e1002146. doi: 10.1371/journal.ppat.1002146 . PMC   3136472 . PMID   21779172.
  21. Fort P, Albertini A, Van-Hua A, Berthomieu A, Roche S, Delsuc F, et al. (January 2012). "Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality" (PDF). Molecular Biology and Evolution. 29 (1): 381–90. doi: 10.1093/molbev/msr226 . PMID   21917725.