Capsid

Last updated

Schematic of a cytomegalovirus CMVschema.svg
Schematic of a cytomegalovirus
Illustration of geometric model changing between two possible capsids. A similar change of size has been observed as the result of a single amino-acid mutation Illustration of the Caspar-Klug model for viruses (or "Goldberg Polyhedra" or "Geodesic domes" or "Fullerenes").gif
Illustration of geometric model changing between two possible capsids. A similar change of size has been observed as the result of a single amino-acid mutation

A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or may not correspond to individual proteins, are called capsomeres. The proteins making up the capsid are called capsid proteins or viral coat proteins (VCP). The virus genomic component inside the capsid, along with occasionally present virus core protein, is called the virus core. The capsid and core together are referred to as a nucleocapsid (cf. also virion).

Contents

Capsids are broadly classified according to their structure. The majority of the viruses have capsids with either helical or icosahedral [2] [3] structure. Some viruses, such as bacteriophages, have developed more complicated structures due to constraints of elasticity and electrostatics. [4] The icosahedral shape, which has 20 equilateral triangular faces, approximates a sphere, while the helical shape resembles the shape of a spring, taking the space of a cylinder but not being a cylinder itself. [5] The capsid faces may consist of one or more proteins. For example, the foot-and-mouth disease virus capsid has faces consisting of three proteins named VP1–3. [6]

Some viruses are enveloped, meaning that the capsid is coated with a lipid membrane known as the viral envelope. The envelope is acquired by the capsid from an intracellular membrane in the virus' host; examples include the inner nuclear membrane, the Golgi membrane, and the cell's outer membrane. [7]

Once the virus has infected a cell and begins replicating itself, new capsid subunits are synthesized using the protein biosynthesis mechanism of the cell. In some viruses, including those with helical capsids and especially those with RNA genomes, the capsid proteins co-assemble with their genomes. In other viruses, especially more complex viruses with double-stranded DNA genomes, the capsid proteins assemble into empty precursor procapsids that include a specialized portal structure at one vertex. Through this portal, viral DNA is translocated into the capsid. [8]

Structural analyses of major capsid protein (MCP) architectures have been used to categorise viruses into lineages. For example, the bacteriophage PRD1, the algal virus Paramecium bursaria Chlorella virus-1 (PBCV-1), mimivirus and the mammalian adenovirus have been placed in the same lineage, whereas tailed, double-stranded DNA bacteriophages ( Caudovirales ) and herpesvirus belong to a second lineage. [9] [10] [11] [12]

Specific shapes

Icosahedral

Icosahedral capsid of an adenovirus Adenovirus 3D schematic.png
Icosahedral capsid of an adenovirus
Virus capsid T-numbers Virus capsid T number.tif
Virus capsid T-numbers

The icosahedral structure is extremely common among viruses. The icosahedron consists of 20 triangular faces delimited by 12 fivefold vertexes and consists of 60 asymmetric units. Thus, an icosahedral virus is made of 60N protein subunits. The number and arrangement of capsomeres in an icosahedral capsid can be classified using the "quasi-equivalence principle" proposed by Donald Caspar and Aaron Klug. [13] Like the Goldberg polyhedra, an icosahedral structure can be regarded as being constructed from pentamers and hexamers. The structures can be indexed by two integers h and k, with and ; the structure can be thought of as taking h steps from the edge of a pentamer, turning 60 degrees counterclockwise, then taking k steps to get to the next pentamer. The triangulation number T for the capsid is defined as:

In this scheme, icosahedral capsids contain 12 pentamers plus 10(T  1) hexamers. [14] [15] The T-number is representative of the size and complexity of the capsids. [16] Geometric examples for many values of h, k, and T can be found at List of geodesic polyhedra and Goldberg polyhedra.

Many exceptions to this rule exist: For example, the polyomaviruses and papillomaviruses have pentamers instead of hexamers in hexavalent positions on a quasi T = 7 lattice. Members of the double-stranded RNA virus lineage, including reovirus, rotavirus and bacteriophage φ6 have capsids built of 120 copies of capsid protein, corresponding to a T = 2 capsid, or arguably a T = 1 capsid with a dimer in the asymmetric unit. Similarly, many small viruses have a pseudo T = 3 (or P = 3) capsid, which is organized according to a T = 3 lattice, but with distinct polypeptides occupying the three quasi-equivalent positions [17]

T-numbers can be represented in different ways, for example T = 1 can only be represented as an icosahedron or a dodecahedron and, depending on the type of quasi-symmetry, T = 3 can be presented as a truncated dodecahedron, an icosidodecahedron, or a truncated icosahedron and their respective duals a triakis icosahedron, a rhombic triacontahedron, or a pentakis dodecahedron. [18] [ clarification needed ]

Prolate

The prolate structure of a typical head on a bacteriophage PhageExterior.svg
The prolate structure of a typical head on a bacteriophage

An elongated icosahedron is a common shape for the heads of bacteriophages. Such a structure is composed of a cylinder with a cap at either end. The cylinder is composed of 10 elongated triangular faces. The Q number (or Tmid), which can be any positive integer, [19] specifies the number of triangles, composed of asymmetric subunits, that make up the 10 triangles of the cylinder. The caps are classified by the T (or Tend) number. [20]

The bacterium E. coli is the host for bacteriophage T4 that has a prolate head structure. The bacteriophage encoded gp31 protein appears to be functionally homologous to E. coli chaperone protein GroES and able to substitute for it in the assembly of bacteriophage T4 virions during infection. [21] Like GroES, gp31 forms a stable complex with GroEL chaperonin that is absolutely necessary for the folding and assembly in vivo of the bacteriophage T4 major capsid protein gp23. [21]

Helical

3D model of a helical capsid structure of a virus Helical capsid with RNA.png
3D model of a helical capsid structure of a virus

Many rod-shaped and filamentous plant viruses have capsids with helical symmetry. [22] The helical structure can be described as a set of n 1-D molecular helices related by an n-fold axial symmetry. [23] The helical transformation are classified into two categories: one-dimensional and two-dimensional helical systems. [23] Creating an entire helical structure relies on a set of translational and rotational matrices which are coded in the protein data bank. [23] Helical symmetry is given by the formula P = μ x ρ, where μ is the number of structural units per turn of the helix, ρ is the axial rise per unit and P is the pitch of the helix. The structure is said to be open due to the characteristic that any volume can be enclosed by varying the length of the helix. [24] The most understood helical virus is the tobacco mosaic virus. [22] The virus is a single molecule of (+) strand RNA. Each coat protein on the interior of the helix bind three nucleotides of the RNA genome. Influenza A viruses differ by comprising multiple ribonucleoproteins, the viral NP protein organizes the RNA into a helical structure. The size is also different; the tobacco mosaic virus has a 16.33 protein subunits per helical turn, [22] while the influenza A virus has a 28 amino acid tail loop. [25]

Functions

The functions of the capsid are to:

The virus must assemble a stable, protective protein shell to protect the genome from lethal chemical and physical agents. These include extremes of pH or temperature and proteolytic and nucleolytic enzymes. For non-enveloped viruses, the capsid itself may be involved in interaction with receptors on the host cell, leading to penetration of the host cell membrane and internalization of the capsid. Delivery of the genome occurs by subsequent uncoating or disassembly of the capsid and release of the genome into the cytoplasm, or by ejection of the genome through a specialized portal structure directly into the host cell nucleus.

Origin and evolution

It has been suggested that many viral capsid proteins have evolved on multiple occasions from functionally diverse cellular proteins. [26] The recruitment of cellular proteins appears to have occurred at different stages of evolution so that some cellular proteins were captured and refunctionalized prior to the divergence of cellular organisms into the three contemporary domains of life, whereas others were hijacked relatively recently. As a result, some capsid proteins are widespread in viruses infecting distantly related organisms (e.g., capsid proteins with the jelly-roll fold), whereas others are restricted to a particular group of viruses (e.g., capsid proteins of alphaviruses). [26] [27]

A computational model (2015) has shown that capsids may have originated before viruses and that they served as a means of horizontal transfer between replicator communities since these communities could not survive if the number of gene parasites increased, with certain genes being responsible for the formation of these structures and those that favored the survival of self-replicating communities. [28] The displacement of these ancestral genes between cellular organisms could favor the appearance of new viruses during evolution. [27]

See also

Related Research Articles

<span class="mw-page-title-main">Picornavirus</span> Family of viruses

Picornaviruses are a group of related nonenveloped RNA viruses which infect vertebrates including fish, mammals, and birds. They are viruses that represent a large family of small, positive-sense, single-stranded RNA viruses with a 30 nm icosahedral capsid. The viruses in this family can cause a range of diseases including the common cold, poliomyelitis, meningitis, hepatitis, and paralysis.

<span class="mw-page-title-main">Rubella virus</span> Species of virus

Rubella virus (RuV) is the pathogenic agent of the disease rubella, transmitted only between humans via the respiratory route, and is the main cause of congenital rubella syndrome when infection occurs during the first weeks of pregnancy.

<span class="mw-page-title-main">Viral protein</span>

The term viral protein refers to both the products of the genome of a virus and any host proteins incorporated into the viral particle. Viral proteins are grouped according to their functions, and groups of viral proteins include structural proteins, nonstructural proteins, regulatory proteins, and accessory proteins. Viruses are non-living and do not have the means to reproduce on their own, instead depending on their host cell's machinery to do this. Thus, viruses do not code for most of the proteins required for their replication and the translation of their mRNA into viral proteins, but use proteins encoded by the host cell for this purpose.

Microviridae is a family of bacteriophages with a single-stranded DNA genome. The name of this family is derived from the ancient Greek word μικρός (mikrós), meaning "small". This refers to the size of their genomes, which are among the smallest of the DNA viruses. Enterobacteria, intracellular parasitic bacteria, and spiroplasma serve as natural hosts. There are 22 species in this family, divided among seven genera and two subfamilies.

<span class="mw-page-title-main">Viral replication</span> Formation of biological viruses during the infection process

Viral replication is the formation of biological viruses during the infection process in the target host cells. Viruses must first get into the cell before viral replication can occur. Through the generation of abundant copies of its genome and packaging these copies, the virus continues infecting new hosts. Replication between viruses is greatly varied and depends on the type of genes involved in them. Most DNA viruses assemble in the nucleus while most RNA viruses develop solely in cytoplasm.

<span class="mw-page-title-main">Bacteriophage MS2</span> Species of virus

Bacteriophage MS2, commonly called MS2, is an icosahedral, positive-sense single-stranded RNA virus that infects the bacterium Escherichia coli and other members of the Enterobacteriaceae. MS2 is a member of a family of closely related bacterial viruses that includes bacteriophage f2, bacteriophage Qβ, R17, and GA.

<i>Cowpea chlorotic mottle virus</i> Species of virus

Cowpea chlorotic mottle virus, known by the abbreviation CCMV, is a virus that specifically infects the cowpea plant, or black-eyed pea. The leaves of infected plants develop yellow spots, hence the name "chlorotic". Similar to its "brother" virus, Cowpea mosaic virus (CPMV), CCMV is produced in high yield in plants. In the natural host, viral particles can be produced at 1–2 mg per gram of infected leaf tissue. Belonging to the bromovirus genus, cowpea chlorotic mottle virus (CCMV) is a small spherical plant virus. Other members of this genus include the brome mosaic virus (BMV) and the broad bean mottle virus (BBMV).

<span class="mw-page-title-main">Capsomere</span> Subunit of a capsid

The capsomere is a subunit of the capsid, an outer covering of protein that protects the genetic material of a virus. Capsomeres self-assemble to form the capsid.

<i>Corticovirus</i> Genus of viruses

Corticovirus is a genus of viruses in the family Corticoviridae. Corticoviruses are bacteriophages; that is, their natural hosts are bacteria. The genus contains two species. The name is derived from Latin cortex, corticis. However, prophages closely related to PM2 are abundant in the genomes of aquatic bacteria, suggesting that the ecological importance of corticoviruses might be underestimated. Bacteriophage PM2 was first described in 1968 after isolation from seawater sampled from the coast of Chile.

<span class="mw-page-title-main">Virus</span> Infectious agent that replicates in cells

A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. Since Dmitri Ivanovsky's 1892 article describing a non-bacterial pathogen infecting tobacco plants and the discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 11,000 of the millions of virus species have been described in detail. The study of viruses is known as virology, a subspeciality of microbiology.

<span class="mw-page-title-main">Bacteriophage Qbeta</span> Species of virus

Bacteriophage Qbeta, commonly referred to as Qbeta or Qβ, is a species consisting of several strains of positive-strand RNA virus which infects bacteria that have F-pili, most commonly Escherichia coli. Its linear genome is packaged into an icosahedral capsid with a diameter of 28 nm. Bacteriophage Qβ enters its host cell after binding to the side of the F-pilus.

Plectrovirus is a genus of viruses, in the family Plectroviridae. Bacteria in the phylum Mycoplasmatota serve as natural hosts, making these viruses bacteriophages. Acholeplasma virus L51 is the only species in the genus.

<span class="mw-page-title-main">Major capsid protein VP1</span>

Major capsid protein VP1 is a viral protein that is the main component of the polyomavirus capsid. VP1 monomers are generally around 350 amino acids long and are capable of self-assembly into an icosahedral structure consisting of 360 VP1 molecules organized into 72 pentamers. VP1 molecules possess a surface binding site that interacts with sialic acids attached to glycans, including some gangliosides, on the surfaces of cells to initiate the process of viral infection. The VP1 protein, along with capsid components VP2 and VP3, is expressed from the "late region" of the circular viral genome.

<i>Pneumoviridae</i> Family of viruses

Pneumoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Humans, cattle, and rodents serve as natural hosts. Respiratory tract infections are associated with member viruses such as human respiratory syncytial virus. There are five species in the family which are divided between the genera Metapneumovirus and Orthopneumovirus. The family used to be considered as a sub-family of Paramyxoviridae, but has been reclassified as of 2016.

<i>Black queen cell virus</i> Species of virus

The black queen cell virus (BQCV) is a virus that infects honey bees, specifically Apis mellifera, Apis florea, and Apis dorsata. Infection of the latter two species is more recent and can be attributed to genetic similarity and geographical closeness.

Escherichia virus CC31, formerly known as Enterobacter virus CC31, is a dsDNA bacteriophage of the subfamily Tevenvirinae responsible for infecting the bacteria family of Enterobacteriaceae. It is one of two discovered viruses of the genus Karamvirus, diverging away from the previously discovered T4virus, as a clonal complex (CC). CC31 was first isolated from Escherichia coli B strain S/6/4 and is primarily associated with Escherichia, even though is named after Enterobacter.

<i>Duplodnaviria</i> Realm of viruses

Duplodnaviria is a realm of viruses that includes all double-stranded DNA viruses that encode the HK97 fold major capsid protein. The HK97 fold major capsid protein is the primary component of the viral capsid, which stores the viral deoxyribonucleic acid (DNA). Viruses in the realm also share a number of other characteristics, such as an icosahedral capsid, an opening in the viral capsid called a portal, a protease enzyme that empties the inside of the capsid prior to DNA packaging, and a terminase enzyme that packages viral DNA into the capsid.

Virosphere was coined to refer to all those places in which viruses are found or which are affected by viruses. However, more recently virosphere has also been used to refer to the pool of viruses that occurs in all hosts and all environments, as well as viruses associated with specific types of hosts, type of genome or ecological niche.

Bacteriophage AP205 is a plaque-forming bacteriophage that infects Acinetobacter bacteria. Bacteriophage AP205 is a protein-coated virus with a positive single-stranded RNA genome. It is a member of the family Fiersviridae, consisting of particles that infect Gram-negative bacteria such as E. coli.

<span class="mw-page-title-main">Virus crystallisation</span> Re-arrangement of viral components into solid crystal particles

Virus crystallisation is the re-arrangement of viral components into solid crystal particles. The crystals are composed of thousands of inactive forms of a particular virus arranged in the shape of a prism. The inactive nature of virus crystals provide advantages for immunologists to effectively analyze the structure and function behind viruses. Understanding of such characteristics have been enhanced thanks to the enhancement and diversity in crystallisation technologies. Virus crystals have a deep history of being widely applied in epidemiology and virology, and still to this day remains a catalyst for studying viral patterns to mitigate potential disease outbreaks.

References

  1. Asensio MA, Morella NM, Jakobson CM, Hartman EC, Glasgow JE, Sankaran B, et al. (September 2016). "A Selection for Assembly Reveals That a Single Amino Acid Mutant of the Bacteriophage MS2 Coat Protein Forms a Smaller Virus-like Particle". Nano Letters. 16 (9): 5944–50. Bibcode:2016NanoL..16.5944A. doi:10.1021/acs.nanolett.6b02948. OSTI   1532201. PMID   27549001. S2CID   16706951.
  2. Lidmar J, Mirny L, Nelson DR (November 2003). "Virus shapes and buckling transitions in spherical shells". Physical Review E. 68 (5 Pt 1): 051910. arXiv: cond-mat/0306741 . Bibcode:2003PhRvE..68e1910L. doi:10.1103/PhysRevE.68.051910. PMID   14682823. S2CID   6023873.
  3. Vernizzi G, Olvera de la Cruz M (November 2007). "Faceting ionic shells into icosahedra via electrostatics". Proceedings of the National Academy of Sciences of the United States of America. 104 (47): 18382–6. Bibcode:2007PNAS..10418382V. doi: 10.1073/pnas.0703431104 . PMC   2141786 . PMID   18003933.
  4. Vernizzi G, Sknepnek R, Olvera de la Cruz M (March 2011). "Platonic and Archimedean geometries in multicomponent elastic membranes". Proceedings of the National Academy of Sciences of the United States of America. 108 (11): 4292–6. Bibcode:2011PNAS..108.4292V. doi: 10.1073/pnas.1012872108 . PMC   3060260 . PMID   21368184.
  5. Branden C, Tooze J (1991). Introduction to Protein Structure. New York: Garland. pp. 161–162. ISBN   978-0-8153-0270-4.
  6. "Virus Structure (web-books.com)". Archived from the original on 2021-02-07. Retrieved 2007-07-10.
  7. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994). Molecular Biology of the Cell (4th ed.). p.  280.
  8. Newcomb WW, Homa FL, Brown JC (August 2005). "Involvement of the portal at an early step in herpes simplex virus capsid assembly". Journal of Virology. 79 (16): 10540–6. doi:10.1128/JVI.79.16.10540-10546.2005. PMC   1182615 . PMID   16051846.
  9. Krupovic M, Bamford DH (December 2008). "Virus evolution: how far does the double beta-barrel viral lineage extend?". Nature Reviews. Microbiology. 6 (12): 941–8. doi:10.1038/nrmicro2033. PMID   19008892. S2CID   31542714.
  10. Forterre P (March 2006). "Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain". Proceedings of the National Academy of Sciences of the United States of America. 103 (10): 3669–74. Bibcode:2006PNAS..103.3669F. doi: 10.1073/pnas.0510333103 . PMC   1450140 . PMID   16505372.
  11. Khayat R, Tang L, Larson ET, Lawrence CM, Young M, Johnson JE (December 2005). "Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses". Proceedings of the National Academy of Sciences of the United States of America. 102 (52): 18944–9. doi: 10.1073/pnas.0506383102 . PMC   1323162 . PMID   16357204.
  12. Laurinmäki PA, Huiskonen JT, Bamford DH, Butcher SJ (December 2005). "Membrane proteins modulate the bilayer curvature in the bacterial virus Bam35". Structure. 13 (12): 1819–28. doi: 10.1016/j.str.2005.08.020 . PMID   16338410.
  13. Caspar DL, Klug A (1962). "Physical principles in the construction of regular viruses". Cold Spring Harbor Symposia on Quantitative Biology. 27: 1–24. doi:10.1101/sqb.1962.027.001.005. PMID   14019094.
  14. Carrillo-Tripp M, Shepherd CM, Borelli IA, Venkataraman S, Lander G, Natarajan P, et al. (January 2009). "VIPERdb2: an enhanced and web API enabled relational database for structural virology". Nucleic Acids Research. 37 (Database issue): D436-42. doi:10.1093/nar/gkn840. PMC   2686430 . PMID   18981051. Archived from the original on 2018-02-11. Retrieved 2011-03-18.
  15. Johnson JE, Speir JA (2009). Desk Encyclopedia of General Virology. Boston: Academic Press. pp. 115–123. ISBN   978-0-12-375146-1.
  16. Mannige RV, Brooks CL (March 2010). "Periodic table of virus capsids: implications for natural selection and design". PLOS ONE. 5 (3): e9423. Bibcode:2010PLoSO...5.9423M. doi: 10.1371/journal.pone.0009423 . PMC   2831995 . PMID   20209096.
  17. Sgro JY. "Virusworld". Institute for Molecular Virology. University of Wisconsin-Madison.
  18. Damodaran KV, Reddy VS, Johnson JE, Brooks CL (December 2002). "A general method to quantify quasi-equivalence in icosahedral viruses". Journal of Molecular Biology. 324 (4): 723–37. doi:10.1016/S0022-2836(02)01138-5. PMID   12460573.
  19. Luque A, Reguera D (June 2010). "The structure of elongated viral capsids". Biophysical Journal. 98 (12): 2993–3003. Bibcode:2010BpJ....98.2993L. doi:10.1016/j.bpj.2010.02.051. PMC   2884239 . PMID   20550912.
  20. Casjens S (2009). Desk Encyclopedia of General Virology. Boston: Academic Press. pp. 167–174. ISBN   978-0-12-375146-1.
  21. 1 2 Marusich EI, Kurochkina LP, Mesyanzhinov VV. Chaperones in bacteriophage T4 assembly. Biochemistry (Mosc). 1998;63(4):399-406
  22. 1 2 3 Yamada S, Matsuzawa T, Yamada K, Yoshioka S, Ono S, Hishinuma T (December 1986). "Modified inversion recovery method for nuclear magnetic resonance imaging". The Science Reports of the Research Institutes, Tohoku University. Ser. C, Medicine. Tohoku Daigaku. 33 (1–4): 9–15. PMID   3629216.
  23. 1 2 3 Aldrich RA (February 1987). "Children in cities--Seattle's KidsPlace program". Acta Paediatrica Japonica. 29 (1): 84–90. doi:10.1111/j.1442-200x.1987.tb00013.x. PMID   3144854. S2CID   33065417.
  24. Racaniello VR, Enquist LW (2008). Principles of Virology, Vol. 1: Molecular Biology. Washington, D.C.: ASM Press. ISBN   978-1-55581-479-3.
  25. Ye Q, Guu TS, Mata DA, Kuo RL, Smith B, Krug RM, Tao YJ (26 December 2012). "Biochemical and structural evidence in support of a coherent model for the formation of the double-helical influenza A virus ribonucleoprotein". mBio. 4 (1): e00467–12. doi:10.1128/mBio.00467-12. PMC   3531806 . PMID   23269829.
  26. 1 2 Krupovic M, Koonin EV (March 2017). "Multiple origins of viral capsid proteins from cellular ancestors". Proceedings of the National Academy of Sciences of the United States of America. 114 (12): E2401–E2410. Bibcode:2017PNAS..114E2401K. doi: 10.1073/pnas.1621061114 . PMC   5373398 . PMID   28265094.
  27. 1 2 Krupovic M, Dolja VV, Koonin EV (July 2019). "Origin of viruses: primordial replicators recruiting capsids from hosts" (PDF). Nature Reviews. Microbiology. 17 (7): 449–458. doi:10.1038/s41579-019-0205-6. PMID   31142823. S2CID   169035711.
  28. Jalasvuori M, Mattila S, Hoikkala V (2015). "Chasing the Origin of Viruses: Capsid-Forming Genes as a Life-Saving Preadaptation within a Community of Early Replicators". PLOS ONE. 10 (5): e0126094. Bibcode:2015PLoSO..1026094J. doi: 10.1371/journal.pone.0126094 . PMC   4425637 . PMID   25955384.

Further reading