A giant virus, sometimes referred to as a girus, is a very large virus, some of which are larger than typical bacteria. [1] [2] All known giant viruses belong to the phylum Nucleocytoviricota . [3]
While the exact criteria as defined in the scientific literature vary, giant viruses are generally described as viruses having large, pseudo-icosahedral capsids (200 to 400 nanometers in diameter) [4] that may be surrounded by a thick (approximately 100 nm) layer of filamentous protein fibers. The viruses have large, double-stranded DNA genomes (300 to >1000 kilobasepairs) that encode a large contingent of genes (of the order of 1000 genes). [3] [5] The best characterized giant viruses are the phylogenetically related mimivirus and megavirus, which belong to the family Mimiviridae (aka Megaviridae), and are distinguished by their large capsid diameters. [3] [5] Giant viruses from the deep ocean, terrestrial sources, and human patients contain genes encoding cytochrome P450 (CYP; P450) enzymes. The origin of these P450 genes in giant viruses remains unknown but may have been acquired from an ancient host. [6]
The genomes of many giant viruses encode many unusual genes that are not found in other viruses, including genes involved in glycolysis and the TCA cycle, [7] fermentation, [8] and the cytoskeleton. [9] [10] [11]
The first giant viruses to be described were chloroviruses of the family Phycodnaviridae. These were discovered in 1981 by Russel H. Meints, James L. Van Etten, Daniel Kuczmarski, Kit Lee, and Barbara Ang. The first chlorovirus was initially called HVCV (Hydra viridis Chlorella virus) since it was first found to infect Chlorella-like algae. [13] [14]
Other giant viruses that infected marine flagellates were described later. The first mimivirus (BV-PW1) was described in 1995, [15] but was not recognized as such until its sequenced genome was released as Cafeteria roenbergensis virus (CroV) in 2010. [16] Subsequently, the Giant Virus Acanthamoeba polyphaga Mimivirus was characterized [17] (which had been mistaken as a bacterium in 1993), [18] and then sequenced. [19] The term "girus" was coined to refer to the group in 2006. [20]
The genomes of giant viruses are the largest known for viruses, and contain genes that encode for important elements of translation machinery, a characteristic that had previously been believed to be indicative of cellular organisms. These genes include multiple genes encoding a number of aminoacyl tRNA synthetases, enzymes that catalyze the esterification of specific amino acids or their precursors to their corresponding cognate tRNAs to form an aminoacyl tRNA that is then used during translation. [5] The presence of four aminoacyl tRNA synthetase encoding genes in mimivirus and mamavirus genomes, both species within the Mimiviridae family, as well as the discovery of seven aminoacyl tRNA synthetase genes in the megavirus genome (including those in Mimiviridae) provide evidence that these large DNA viruses may have evolved from a shared cellular genome ancestor by means of genome reduction. [5]
The discovery and subsequent characterization of giant viruses has triggered debate on their evolutionary origins. The two main hypotheses are that they evolved from small viruses by picking up DNA from host organisms; or that they evolved from very complicated organisms via genome reduction, losing various functions including self-reproduction. [21] The possible complicated ancestral organism is also a topic of debate: by one proposal, it might represent a fourth domain of life, [5] but this has been largely discounted. [22] [23] [24]
Giant virus name | Genome Length | Genes | Capsid diameter (nm) | Hair cover | Genbank # |
---|---|---|---|---|---|
Pandoravirus salinus [25] | 2,473,870 | 2500 proteins (predicted) | ~500 | KC977571 | |
Tupanvirus [26] | 1,500,000 | 1276–1425 proteins | ≥450+550 [27] | KY523104 MF405918 [28] | |
Bodo saltans virus [29] | 1,385,869 | 1227 proteins (predicted) | ~300 | yes (~40 nm) | MF782455 |
Megavirus chilense [30] | 1,259,197 | 1120 proteins (predicted) | 440 | yes (75 nm) | JN258408 |
Mamavirus [31] | 1,191,693 | 1023 proteins (predicted) | 500 | yes (120 nm) | JF801956 |
Mimivirus [19] [32] | 1,181,549 | 979 proteins 39 non-coding | 500 | yes (120 nm) | NC_014649 |
M4 [33] (Mimivirus "bald" variant) | 981,813 | 756 proteins (predicted) | 390 | No | JN036606 |
Cafeteria roenbergensis virus [34] | 617,453 (730 kb) | 544 proteins (predicted) | 300 | No | NC_014637 |
The whole list is in the Giant Virus Toplist created by the Giant Virus Finder software. [35] As of June 11, 2018, there were 183 listed. [36]
Giant virus name | Aminoacyl-tRNA synthetase | Octocoral-like 1MutS | 2Stargate [37] | Known virophage [38] | Cytoplasmic virion factory | Host |
---|---|---|---|---|---|---|
Megavirus chilensis | 7 (Tyr, Arg, Met, Cys, Trp, Asn, Ile) | yes | yes | no | yes | Acanthamoeba (Unikonta, Amoebozoa) |
Mamavirus | 4 (Tyr, Arg, Met, Cys) | yes | yes | yes | yes | Acanthamoeba (Unikonta, Amoebozoa) |
Mimivirus | 4 (Tyr, Arg, Met, Cys) | yes | yes | yes | yes | Acanthamoeba (Unikonta, Amoebozoa) |
M4 (Mimivirus "bald" variant) | 3 (Met, Cys, Arg) | yes | yes | Resistant | yes | Acanthamoeba (Unikonta, Amoebozoa) |
Cafeteria roenbergensis virus | 1 (Ile) | yes | no | yes | yes | Phagotrophic protozoan (Heterokonta, Stramenopiles) |
1Mutator S (MutS) and its homologs are a family of DNA mismatch repair proteins involved in the mismatch repair system that acts to correct point mutations or small insertion/deletion loops produced during DNA replication, increasing the fidelity of replication.2A stargate is a five-pronged star structure present on the viral capsid forming the portal through which the internal core of the particle is delivered to the host's cytoplasm.
Mimivirus is a genus of giant viruses, in the family Mimiviridae. Amoeba serve as their natural hosts. This genus contains a single identified species named Acanthamoeba polyphaga mimivirus (APMV). It also refers to a group of phylogenetically related large viruses.
The mobilome is the entire set of mobile genetic elements in a genome. Mobilomes are found in eukaryotes, prokaryotes, and viruses. The compositions of mobilomes differ among lineages of life, with transposable elements being the major mobile elements in eukaryotes, and plasmids and prophages being the major types in prokaryotes. Virophages contribute to the viral mobilome.
Virophages are small, double-stranded DNA viral phages that require the co-infection of another virus. The co-infecting viruses are typically giant viruses. Virophages rely on the viral replication factory of the co-infecting giant virus for their own replication. One of the characteristics of virophages is that they have a parasitic relationship with the co-infecting virus. Their dependence upon the giant virus for replication often results in the deactivation of the giant viruses. The virophage may improve the recovery and survival of the host organism.
Mimivirus-dependent virus Sputnik is a subviral agent that reproduces in amoeba cells that are already infected by a certain helper virus; Sputnik uses the helper virus's machinery for reproduction and inhibits replication of the helper virus. It is known as a virophage, in analogy to the term bacteriophage.
Mimiviridae is a family of viruses. Amoeba and other protists serve as natural hosts. The family is divided in up to 4 subfamilies. Viruses in this family belong to the nucleocytoplasmic large DNA virus clade (NCLDV), also referred to as giant viruses.
Mamavirus is a large and complex virus in the Group I family Mimiviridae. The virus is exceptionally large, and larger than many bacteria. Mamavirus and other mimiviridae belong to nucleocytoplasmic large DNA virus (NCLDVs) family. Mamavirus can be compared to the similar complex virus mimivirus; mamavirus was so named because it is similar to but larger than mimivirus.
Cafeteria roenbergensis virus (CroV) is a giant virus that infects the marine bicosoecid flagellate Cafeteria roenbergensis, a member of the microzooplankton community.
Marseilleviridae is a family of viruses first named in 2012. The genomes of these viruses are double-stranded DNA. Amoeba are often hosts, but there is evidence that they are found in humans as well. The family contains one genus and four species, two of which are unassigned to a genus. It is a member of the nucleocytoplasmic large DNA viruses clade.
Megavirus is a viral genus, phylogenetically related to Acanthamoeba polyphaga mimivirus (APMV). In colloquial speech, Megavirus chilense is more commonly referred to as just "Megavirus". Until the discovery of pandoraviruses in 2013, it had the largest capsid diameter of all known viruses, as well as the largest and most complex genome among all known viruses.
A transpoviron is a plasmid-like genetic element found in the genomes of giant DNA viruses.
Pandoravirus is a proposed genus of giant virus, first discovered in 2013. It is the third largest in physical size of any known viral genus, behind Pithovirus and Megaklothovirus. Pandoraviruses have double stranded DNA genomes, with the largest genome size of any known viral genus.
Alphapithovirus, is a genus of giant virus known from two species, Alphapithovirus sibericum, which infects amoebas, and Alphapithovirus massiliense. It is DNA-based and is a member of the nucleocytoplasmic large DNA viruses clade. It was discovered in 2014, when a viable specimen was found in a 30,000-year-old ice core harvested from permafrost in Siberia, Russia.
Mimivirus-dependent virus Zamilon, or Zamilon, is a virophage, a group of small DNA viruses that infect protists and require a helper virus to replicate; they are a type of satellite virus. Discovered in 2013 in Tunisia, infecting Acanthamoeba polyphaga amoebae, Zamilon most closely resembles Sputnik, the first virophage to be discovered. The name is Arabic for "the neighbour". Its spherical particle is 50–60 nm in diameter, and contains a circular double-stranded DNA genome of around 17 kb, which is predicted to encode 20 polypeptides. A related strain, Zamilon 2, has been identified in North America.
Polintons are large DNA transposons which contain genes with homology to viral proteins and which are often found in eukaryotic genomes. They were first discovered in the mid-2000s and are the largest and most complex known DNA transposons. Polintons encode up to 10 individual proteins and derive their name from two key proteins, a DNA polymerase and a retroviral-like integrase.
Klosneuvirus is a new type of giant virus found by the analysis of low-complexity metagenomes from a wastewater treatment plant in Klosterneuburg, Austria. It has a 1.57-Mb genome coding unusually high number of genes typically found in cellular organisms, including aminoacyl transfer RNA synthetases with specificities for 19 different amino acids, over 10 translation factors and several tRNA-modifying enzymes. Klosneuvirus, Indivirus, Catovirus and Hokovirus, are part of a group of giant viruses denoted as Klosneuviruses or Klosneuvirinae, a proposed subfamily of the Mimiviridae.
Tupanvirus is a genus of viruses first described in 2018. The genus is composed of two species of virus that are in the giant virus group. Researchers discovered the first isolate in 2012 from deep water sediment samples taken at 3,000 m depth off the coast of Brazil. The second isolate was collected from a soda lake in Southern Nhecolândia, Brazil in 2014. They are named after Tupã (Tupan), a Guaraní thunder god, and the places they were found. These are the first viruses reported to possess genes for amino-acyl tRNA synthetases for all 20 standard amino acids.
Chrysochromulina ericina virus 01B, or simply Chrysochromulina ericina virus (CeV) is a giant virus in the family Mimiviridae infecting Haptolina ericina, a marine microalgae member of the Haptophyta. CeV is a dsDNA virus.
In virology, realm is the highest taxonomic rank established for viruses by the International Committee on Taxonomy of Viruses (ICTV), which oversees virus taxonomy. Six virus realms are recognized and united by specific highly conserved traits:
Nucleocytoviricota is a phylum of viruses. Members of the phylum are also known as the nucleocytoplasmic large DNA viruses (NCLDV), which serves as the basis of the name of the phylum with the suffix -viricota for virus phylum. These viruses are referred to as nucleocytoplasmic because they are often able to replicate in both the host's cell nucleus and cytoplasm.
Virosphere was coined to refer to all those places in which viruses are found or which are affected by viruses. However, more recently virosphere has also been used to refer to the pool of viruses that occurs in all hosts and all environments, as well as viruses associated with specific types of hosts, type of genome or ecological niche.