Mobilome

Last updated
(A) Transposable elements are flanked by inverted tandem repeats (TIRs). (B) Transposases cleave the transposable element at the TIRs. The free transposable element inserts into another part of the genome. DNA Transposon.png
(A) Transposable elements are flanked by inverted tandem repeats (TIRs). (B) Transposases cleave the transposable element at the TIRs. The free transposable element inserts into another part of the genome.

The mobilome is the entire set of mobile genetic elements in a genome. Mobilomes are found in eukaryotes, [1] prokaryotes, [2] and viruses. [3] The compositions of mobilomes differ among lineages of life, with transposable elements being the major mobile elements in eukaryotes, and plasmids and prophages being the major types in prokaryotes. [4] Virophages contribute to the viral mobilome. [5]

Contents

Mobilome in eukaryotes

Transposable elements are elements that can move about or propagate within the genome, and are the major constituents of the eukaryotic mobilome. [4] Transposable elements can be regarded as genetic parasites because they exploit the host cell's transcription and translation mechanisms to extract and insert themselves in different parts of the genome, regardless of the phenotypic effect on the host. [6]

Eukaryotic transposable elements were first discovered in maize (Zea mays) in which kernels showed a dotted color pattern. [7] Barbara McClintock described the maize Ac/Ds system in which the Ac locus promotes the excision of the Ds locus from the genome, and excised Ds elements can mutate genes responsible for pigment production by inserting into their coding regions. [8]

Other examples of transposable elements include: yeast (Saccharomyces cerevisiae) Ty elements, a retrotransposon which encodes a reverse transcriptase to convert its mRNA transcript into DNA which can then insert into other parts of the genome; [9] [10] and fruit fly (Drosophila melanogaster) P-elements, which randomly inserts into the genome to cause mutations in germ line cells, but not in somatic cells. [11]

Mobilome in prokaryotes

Bacterial conjugation. (1) Production of pilus. (2) Pilus connects two bacteria. (3) One strand of plasmid DNA moves into the recipient. (4) Both bacteria contain identical plasmids. Conjugation.svg
Bacterial conjugation. (1) Production of pilus. (2) Pilus connects two bacteria. (3) One strand of plasmid DNA moves into the recipient. (4) Both bacteria contain identical plasmids.

Plasmids were discovered in the 1940s as genetic materials outside of bacterial chromosomes. [12] Prophages are genomes of bacteriophages (a type of virus) that are inserted into bacterial chromosomes; prophages can then be spread to other bacteria through the lytic cycle and lysogenic cycle of viral replication. [13]

While transposable elements are also found in prokaryotic genomes, [14] the most common mobile genetic elements in the prokaryotic genome are plasmids and prophages. [4]

Plasmids and prophages can move between genomes through bacterial conjugation, allowing horizontal gene transfer. [15] Plasmids often carry genes that are responsible for bacterial antibiotic resistance; as these plasmids replicate and pass from one genome to another, the whole bacterial population can quickly adapt to the antibiotic. [16] [17] Prophages can loop out of bacterial chromosomes to produce bacteriophages that go on to infect other bacteria with the prophages; this allows prophages to propagate quickly among the bacterial population, to the harm of the bacterial host. [13]

Mobilome in viruses

Discovered in 2008 in a strain of Acanthamoeba castellanii mimivirus , [18] virophages are an element of the virus mobilome. [5] Virophages are viruses that replicate only when host cells are co-infected with helper viruses. [19] Following co-infection, helper viruses exploit the host cell's transcription/translation machinery to produce their own machinery; virophages replicate through the machinery of either the host cell or the viruses. [19] The replication of virophages can negatively impact the replication of helper viruses. [18] [20]

Sputnik [18] [21] and mavirus [22] are examples of virophages.

Related Research Articles

<span class="mw-page-title-main">Genome</span> All genetic material of an organism

In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA. The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences, and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondria and a small mitochondrial genome. Algae and plants also contain chloroplasts with a chloroplast genome.

<span class="mw-page-title-main">Plasmid</span> Small DNA molecule within a cell

A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet.

<span class="mw-page-title-main">Transposable element</span> Semiparasitic DNA sequence

A transposable element is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Transposition often results in duplication of the same genetic material. In the human genome, L1 and Alu elements are two examples. Barbara McClintock's discovery of them earned her a Nobel Prize in 1983. Its importance in personalized medicine is becoming increasingly relevant, as well as gaining more attention in data analytics given the difficulty of analysis in very high dimensional spaces.

<span class="mw-page-title-main">Horizontal gene transfer</span> Type of nonhereditary genetic change

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms. HGT is influencing scientific understanding of higher order evolution while more significantly shifting perspectives on bacterial evolution.

<span class="mw-page-title-main">Prophage</span> Bacteriophage genome that is integrated into a bacterial cell

A prophage is a bacteriophage genome that is integrated into the circular bacterial chromosome or exists as an extrachromosomal plasmid within the bacterial cell. Integration of prophages into the bacterial host is the characteristic step of the lysogenic cycle of temperate phages. Prophages remain latent in the genome through multiple cell divisions until activation by an external factor, such as UV light, leading to production of new phage particles that will lyse the cell and spread. As ubiquitous mobile genetic elements, prophages play important roles in bacterial genetics and evolution, such as in the acquisition of virulence factors.

<i>Mimivirus</i> Genus of viruses

Mimivirus is a genus of giant viruses, in the family Mimiviridae. Amoeba serve as their natural hosts. This genus contains a single identified species named Acanthamoeba polyphaga mimivirus (APMV). It also refers to a group of phylogenetically related large viruses.

<span class="mw-page-title-main">Retrotransposon</span> Type of genetic component

Retrotransposons are a type of genetic component that copy and paste themselves into different genomic locations (transposon) by converting RNA back into DNA through the reverse transcription process using an RNA transposition intermediate.

<span class="mw-page-title-main">Transduction (genetics)</span> Transfer process in genetics

Transduction is the process by which foreign DNA is introduced into a cell by a virus or viral vector. An example is the viral transfer of DNA from one bacterium to another and hence an example of horizontal gene transfer. Transduction does not require physical contact between the cell donating the DNA and the cell receiving the DNA, and it is DNase resistant. Transduction is a common tool used by molecular biologists to stably introduce a foreign gene into a host cell's genome.

Exon shuffling is a molecular mechanism for the formation of new genes. It is a process through which two or more exons from different genes can be brought together ectopically, or the same exon can be duplicated, to create a new exon-intron structure. There are different mechanisms through which exon shuffling occurs: transposon mediated exon shuffling, crossover during sexual recombination of parental genomes and illegitimate recombination.

<span class="mw-page-title-main">Mobile genetic elements</span> DNA sequence whose position in the genome is variable

Mobile genetic elements (MGEs) sometimes called selfish genetic elements are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In humans, approximately 50% of the genome is thought to be MGEs. MGEs play a distinct role in evolution. Gene duplication events can also happen through the mechanism of MGEs. MGEs can also cause mutations in protein coding regions, which alters the protein functions. These mechanisms can also rearrange genes in the host genome generating variation. These mechanism can increase fitness by gaining new or additional functions. An example of MGEs in evolutionary context are that virulence factors and antibiotic resistance genes of MGEs can be transported to share genetic code with neighboring bacteria. However, MGEs can also decrease fitness by introducing disease-causing alleles or mutations. The set of MGEs in an organism is called a mobilome, which is composed of a large number of plasmids, transposons and viruses.

<span class="mw-page-title-main">Sputnik virophage</span>

Mimivirus-dependent virus Sputnik is a subviral agent that reproduces in amoeba cells that are already infected by a certain helper virus; Sputnik uses the helper virus's machinery for reproduction and inhibits replication of the helper virus. It is known as a virophage, in analogy to the term bacteriophage.

<i>Mimiviridae</i> Family of viruses

Mimiviridae is a family of viruses. Amoeba and other protists serve as natural hosts. The family is divided in up to 4 subfamilies. Viruses in this family belong to the nucleocytoplasmic large DNA virus clade (NCLDV), also referred to as giant viruses.

Mamavirus is a large and complex virus in the Group I family Mimiviridae. The virus is exceptionally large, and larger than many bacteria. Mamavirus and other mimiviridae belong to nucleocytoplasmic large DNA virus (NCLDVs) family. Mamavirus can be compared to the similar complex virus mimivirus; mamavirus was so named because it is similar to but larger than mimivirus.

<i>Cafeteria roenbergensis virus</i> Species of virus

Cafeteria roenbergensis virus (CroV) is a giant virus that infects the marine bicosoecid flagellate Cafeteria roenbergensis, a member of the microzooplankton community.

A transpoviron is a plasmid-like genetic element found in the genomes of giant DNA viruses.

Bacteriophage Mu, also known as mu phage or mu bacteriophage, is a muvirus of the family Myoviridae which has been shown to cause genetic transposition. It is of particular importance as its discovery in Escherichia coli by Larry Taylor was among the first observations of insertion elements in a genome. This discovery opened up the world to an investigation of transposable elements and their effects on a wide variety of organisms. While Mu was specifically involved in several distinct areas of research, the wider implications of transposition and insertion transformed the entire field of genetics.

<span class="mw-page-title-main">Zamilon virophage</span> Virus type

Mimivirus-dependent virus Zamilon, or Zamilon, is a virophage, a group of small DNA viruses that infect protists and require a helper virus to replicate; they are a type of satellite virus. Discovered in 2013 in Tunisia, infecting Acanthamoeba polyphaga amoebae, Zamilon most closely resembles Sputnik, the first virophage to be discovered. The name is Arabic for "the neighbour". Its spherical particle is 50–60 nm in diameter, and contains a circular double-stranded DNA genome of around 17 kb, which is predicted to encode 20 polypeptides. A related strain, Zamilon 2, has been identified in North America.

DNA transposons are DNA sequences, sometimes referred to "jumping genes", that can move and integrate to different locations within the genome. They are class II transposable elements (TEs) that move through a DNA intermediate, as opposed to class I TEs, retrotransposons, that move through an RNA intermediate. DNA transposons can move in the DNA of an organism via a single-or double-stranded DNA intermediate. DNA transposons have been found in both prokaryotic and eukaryotic organisms. They can make up a significant portion of an organism's genome, particularly in eukaryotes. In prokaryotes, TE's can facilitate the horizontal transfer of antibiotic resistance or other genes associated with virulence. After replicating and propagating in a host, all transposon copies become inactivated and are lost unless the transposon passes to a genome by starting a new life cycle with horizontal transfer. It is important to note that DNA transposons do not randomly insert themselves into the genome, but rather show preference for specific sites.

Polintons are large DNA transposons which contain genes with homology to viral proteins and which are often found in eukaryotic genomes. They were first discovered in the mid-2000s and are the largest and most complex known DNA transposons. Polintons encode up to 10 individual proteins and derive their name from two key proteins, a DNA polymerase and a retroviral-like integrase.

Integrative and conjugative elements (ICEs) are mobile genetic elements present in both gram-positive and gram-negative bacteria. In a donor cell, ICEs are located primarily on the chromosome, but have the ability to excise themselves from the genome and transfer to recipient cells via bacterial conjugation.

References

  1. Hurst GD, Werren JH (August 2001). "The role of selfish genetic elements in eukaryotic evolution". Nature Reviews. Genetics. 2 (8): 597–606. doi:10.1038/35084545. PMID   11483984. S2CID   2715605.
  2. Toussaint A, Merlin C (January 2002). "Mobile elements as a combination of functional modules". Plasmid. 47 (1): 26–35. doi:10.1006/plas.2001.1552. PMID   11798283.
  3. Miller DW, Miller LK (October 1982). "A virus mutant with an insertion of a copia-like transposable element". Nature. 299 (5883): 562–4. Bibcode:1982Natur.299..562M. doi:10.1038/299562a0. PMID   6289125. S2CID   4275018.
  4. 1 2 3 Siefert JL (2009). "Defining the Mobilome". In Gogarten MB, Gogarten JP, Olendzenski LC (eds.). Horizontal Gene Transfer: Genomes in Flux. Methods in Molecular Biology. Vol. 532. Humana Press. pp. 13–27. doi:10.1007/978-1-60327-853-9_2. ISBN   9781603278539. PMID   19271177.
  5. 1 2 Bekliz M, Colson P, La Scola B (November 2016). "The Expanding Family of Virophages". Viruses. 8 (11): 317. doi: 10.3390/v8110317 . PMC   5127031 . PMID   27886075.
  6. Wallau GL, Ortiz MF, Loreto EL (2012). "Horizontal transposon transfer in eukarya: detection, bias, and perspectives". Genome Biology and Evolution. 4 (8): 689–99. doi:10.1093/gbe/evs055. PMC   3516303 . PMID   22798449.
  7. Coe EH (November 2001). "The origins of maize genetics". Nature Reviews. Genetics. 2 (11): 898–905. doi:10.1038/35098524. PMID   11715045. S2CID   5498836.
  8. McClintock B (June 1950). "The origin and behavior of mutable loci in maize". Proceedings of the National Academy of Sciences of the United States of America. 36 (6): 344–55. Bibcode:1950PNAS...36..344M. doi: 10.1073/pnas.36.6.344 . PMC   1063197 . PMID   15430309.
  9. Mellor J, Malim MH, Gull K, Tuite MF, McCready S, Dibbayawan T, et al. (December 1985). "Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast". Nature. 318 (6046): 583–6. Bibcode:1985Natur.318..583M. doi:10.1038/318583a0. PMID   2415827. S2CID   4314282.
  10. Garfinkel DJ, Boeke JD, Fink GR (September 1985). "Ty element transposition: reverse transcriptase and virus-like particles". Cell. 42 (2): 507–17. doi:10.1016/0092-8674(85)90108-4. PMID   2411424. S2CID   35750065.
  11. Laski FA, Rio DC, Rubin GM (January 1986). "Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing". Cell. 44 (1): 7–19. doi:10.1016/0092-8674(86)90480-0. PMID   3000622. S2CID   18364777.
  12. Sonneborn TM (April 1950). "The cytoplasm in heredity". Heredity. 4 (1): 11–36. doi: 10.1038/hdy.1950.2 . PMID   15415003.
  13. 1 2 Bertani G (1953-01-01). "Lysogenic versus lytic cycle of phage multiplication". Cold Spring Harbor Symposia on Quantitative Biology. 18: 65–70. doi:10.1101/SQB.1953.018.01.014. PMID   13168970.
  14. Campbell A, Berg DE, Botstein D, Lederberg EM, Novick RP, Starlinger P, Szybalski W (March 1979). "Nomenclature of transposable elements in prokaryotes". Gene. 5 (3): 197–206. doi:10.1016/0378-1119(79)90078-7. PMID   467979.
  15. Juhas M (February 2015). "Horizontal gene transfer in human pathogens" (PDF). Critical Reviews in Microbiology. 41 (1): 101–8. doi:10.3109/1040841X.2013.804031. PMID   23862575. S2CID   5193869.
  16. Harrison E, Brockhurst MA (June 2012). "Plasmid-mediated horizontal gene transfer is a coevolutionary process" (PDF). Trends in Microbiology. 20 (6): 262–7. doi:10.1016/j.tim.2012.04.003. PMID   22564249.
  17. Gillings MR (2013). "Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome". Frontiers in Microbiology. 4: 4. doi: 10.3389/fmicb.2013.00004 . PMC   3560386 . PMID   23386843.
  18. 1 2 3 La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, et al. (September 2008). "The virophage as a unique parasite of the giant mimivirus". Nature. 455 (7209): 100–4. Bibcode:2008Natur.455..100L. doi:10.1038/nature07218. PMID   18690211. S2CID   4422249.
  19. 1 2 Claverie JM, Abergel C (2009). "Mimivirus and its virophage". Annual Review of Genetics. 43 (1): 49–66. doi:10.1146/annurev-genet-102108-134255. PMID   19653859.
  20. Duponchel S, Fischer MG (March 2019). "Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses". PLOS Pathogens. 15 (3): e1007592. doi: 10.1371/journal.ppat.1007592 . PMC   6428243 . PMID   30897185.
  21. Sun S, La Scola B, Bowman VD, Ryan CM, Whitelegge JP, Raoult D, Rossmann MG (January 2010). "Structural studies of the Sputnik virophage". Journal of Virology. 84 (2): 894–7. doi:10.1128/JVI.01957-09. PMC   2798384 . PMID   19889775.
  22. Fischer MG, Hackl T (December 2016). "Host genome integration and giant virus-induced reactivation of the virophage mavirus" (PDF). Nature. 540 (7632): 288–291. Bibcode:2016Natur.540..288F. doi:10.1038/nature20593. PMID   27929021. S2CID   4458402.