Plastid

Last updated

Plastid
Plagiomnium affine laminazellen.jpeg
Plant cells with visible chloroplasts
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Cyanobacteria
Clade: Plastid

A plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. Plastids are considered to be intracellular endosymbiotic cyanobacteria. [1]

Contents

Examples of plastids include chloroplasts (used for photosynthesis); chromoplasts (used for synthesis and storage of pigments); leucoplasts (non-pigmented plastids, some of which can differentiate); and apicoplasts (non-photosynthetic plastids of apicomplexa derived from secondary endosymbiosis).

A permanent primary endosymbiosis event occurred about 1.5 billion years ago in the Archaeplastida clade land plants, red algae, green algae and glaucophytes probably with a cyanobiont, a symbiotic cyanobacteria related to the genus Gloeomargarita . [2] [3] Another primary endosymbiosis event occurred later, between 140 to 90 million years ago, in the photosynthetic plastids Paulinella amoeboids of the cyanobacteria genera Prochlorococcus and Synechococcus , or the "PS-clade". [4] [5] Secondary and tertiary endosymbiosis events have also occurred in a wide variety of organisms; and some organisms developed the capacity to sequester ingested plastidsa process known as kleptoplasty.

A. F. W. Schimper [6] [a] was the first to name, describe, and provide a clear definition of plastids, which possess a double-stranded DNA molecule that long has been thought of as circular in shape, like that of the circular chromosome of prokaryotic cells but now, perhaps not; (see "..a linear shape"). Plastids are sites for manufacturing and storing pigments and other important chemical compounds used by the cells of autotrophic eukaryotes. Some contain biological pigments such as used in photosynthesis or which determine a cell's color. Plastids in organisms that have lost their photosynthetic properties are highly useful for manufacturing molecules like the isoprenoids. [8]

In land plants

Plastid types Plastids types.svg
Plastid types
Leucoplasts in plant cells. 010-Sol-tub-40xHF-Gewebe.jpg
Leucoplasts in plant cells.

Chloroplasts, proplastids, and differentiation

In land plants, the plastids that contain chlorophyll can perform photosynthesis, thereby creating internal chemical energy from external sunlight energy while capturing carbon from Earth's atmosphere and furnishing the atmosphere with life-giving oxygen. These are the chlorophyll-plastidsand they are named chloroplasts; (see top graphic).

Other plastids can synthesize fatty acids and terpenes, which may be used to produce energy or as raw material to synthesize other molecules. For example, plastid epidermal cells manufacture the components of the tissue system known as plant cuticle, including its epicuticular wax, from palmitic acid which itself is synthesized in the chloroplasts of the mesophyll tissue. Plastids function to store different components including starches, fats, and proteins. [9]

All plastids are derived from proplastids, which are present in the meristematic regions of the plant. Proplastids and young chloroplasts typically divide by binary fission, but more mature chloroplasts also have this capacity.

Plant proplastids (undifferentiated plastids) may differentiate into several forms, depending upon which function they perform in the cell, (see top graphic). They may develop into any of the following variants: [10]

Leucoplasts differentiate into even more specialized plastids, such as:

Depending on their morphology and target function, plastids have the ability to differentiate or redifferentiate between these and other forms.

Plastomes and Chloroplast DNA/ RNA; plastid DNA and plastid nucleoids

Each plastid creates multiple copies of its own unique genome, or plastome, (from 'plastid genome')which for a chlorophyll plastid (or chloroplast) is equivalent to a 'chloroplast genome', or a 'chloroplast DNA'. [11] [12] The number of genome copies produced per plastid is variable, ranging from 1000 or more in rapidly dividing new cells, encompassing only a few plastids, down to 100 or less in mature cells, encompassing numerous plastids.

A plastome typically contains a genome that encodes transfer ribonucleic acids (tRNA)s and ribosomal ribonucleic acids (rRNAs). It also contains proteins involved in photosynthesis and plastid gene transcription and translation. But these proteins represent only a small fraction of the total protein set-up necessary to build and maintain any particular type of plastid. Nuclear genes (in the cell nucleus of a plant) encode the vast majority of plastid proteins; and the expression of nuclear and plastid genes is co-regulated to coordinate the development and differention of plastids.

Many plastids, particularly those responsible for photosynthesis, possess numerous internal membrane layers. Plastid DNA exists as protein-DNA complexes associated as localized regions within the plastid's inner envelope membrane; and these complexes are called 'plastid nucleoids'. Unlike the nucleus of a eukaryotic cell, a plastid nucleoid is not surrounded by a nuclear membrane. The region of each nucleoid may contain more than 10 copies of the plastid DNA.

Where the proplastid (undifferentiated plastid) contains a single nucleoid region located near the centre of the proplastid, the developing (or differentiating) plastid has many nucleoids localized at the periphery of the plastid and bound to the inner envelope membrane. During the development/ differentiation of proplastids to chloroplastsand when plastids are differentiating from one type to anothernucleoids change in morphology, size, and location within the organelle. The remodelling of plastid nucleoids is believed to occur by modifications to the abundance of and the composition of nucleoid proteins.

In normal plant cells long thin protuberances called stromules sometimes formextending from the plastid body into the cell cytosol while interconnecting several plastids. Proteins and smaller molecules can move around and through the stromules. Comparatively, in the laboratory, most cultured cellswhich are large compared to normal plant cellsproduce very long and abundant stromules that extend to the cell periphery.

In 2014, evidence was found of the possible loss of plastid genome in Rafflesia lagascae, a non-photosynthetic parasitic flowering plant, and in Polytomella , a genus of non-photosynthetic green algae. Extensive searches for plastid genes in both taxons yielded no results, but concluding that their plastomes are entirely missing is still disputed. [13] Some scientists argue that plastid genome loss is unlikely since even these non-photosynthetic plastids contain genes necessary to complete various biosynthetic pathways including heme biosynthesis. [13] [14]

Even with any loss of plastid genome in Rafflesiaceae, the plastids still occur there as "shells" without DNA content, [15] which is reminiscent of hydrogenosomes in various organisms.

In algae and protists

Plastid types in algae and protists include:

The plastid of photosynthetic Paulinella species is often referred to as the 'cyanelle' or chromatophore, and is used in photosynthesis. [17] [18] It had a much more recent endosymbiotic event, in the range of 140–90 million years ago, which is the only other known primary endosymbiosis event of cyanobacteria. [19] [20]

Etioplasts, amyloplasts and chromoplasts are plant-specific and do not occur in algae.[ citation needed ] Plastids in algae and hornworts may also differ from plant plastids in that they contain pyrenoids [21] .

Inheritance

In reproducing, most plants inherit their plastids from only one parent. In general, angiosperms inherit plastids from the female gamete, where many gymnosperms inherit plastids from the male pollen. Algae also inherit plastids from just one parent. Thus the plastid DNA of the other parent is completely lost.

In normal intraspecific crossingsresulting in normal hybrids of one speciesthe inheriting of plastid DNA appears to be strictly uniparental; i.e., from the female. In interspecific hybridisations, however, the inheriting is apparently more erratic. Although plastids are inherited mainly from the female in interspecific hybridisations, there are many reports of hybrids of flowering plants producing plastids from the male. Approximately 20% of angiosperms, including alfalfa (Medicago sativa), normally show biparental inheriting of plastids. [22]

DNA damage and repair

The plastid DNA of maize seedlings is subjected to increasing damage as the seedlings develop. [23] The DNA damage is due to oxidative environments created by photo-oxidative reactions and photosynthetic/ respiratory electron transfer. Some DNA molecules are repaired but DNA with unrepaired damage is apparently degraded to non-functional fragments.

DNA repair proteins are encoded by the cell's nuclear genome and then translocated to plastids where they maintain genome stability/ integrity by repairing the plastid's DNA. [24] For example, in chloroplasts of the moss Physcomitrella patens , a protein employed in DNA mismatch repair (Msh1) interacts with proteins employed in recombinational repair (RecA and RecG) to maintain plastid genome stability. [25]

Origin

Plastids are thought to be descended from endosymbiotic cyanobacteria. The primary endosymbiotic event of the Archaeplastida is hypothesized to have occurred around 1.5 billion years ago [26] and enabled eukaryotes to carry out oxygenic photosynthesis. [27] Three evolutionary lineages in the Archaeplastida have since emerged in which the plastids are named differently: chloroplasts in green algae and/or plants, rhodoplasts in red algae, and muroplasts in the glaucophytes. The plastids differ both in their pigmentation and in their ultrastructure. For example, chloroplasts in plants and green algae have lost all phycobilisomes, the light harvesting complexes found in cyanobacteria, red algae and glaucophytes, but instead contain stroma and grana thylakoids. The glaucocystophycean plastid—in contrast to chloroplasts and rhodoplasts—is still surrounded by the remains of the cyanobacterial cell wall. All these primary plastids are surrounded by two membranes.

The plastid of photosynthetic Paulinella species is often referred to as the 'cyanelle' or chromatophore, and had a much more recent endosymbiotic event about 90–140 million years ago; it is the only known primary endosymbiosis event of cyanobacteria outside of the Archaeplastida. [17] [18] The plastid belongs to the "PS-clade" (of the cyanobacteria genera Prochlorococcus and Synechococcus ), which is a different sister clade to the plastids belonging to the Archaeplastida. [4] [5]

In contrast to primary plastids derived from primary endosymbiosis of a prokaryoctyic cyanobacteria, complex plastids originated by secondary endosymbiosis in which a eukaryotic organism engulfed another eukaryotic organism that contained a primary plastid. [28] When a eukaryote engulfs a red or a green alga and retains the algal plastid, that plastid is typically surrounded by more than two membranes. In some cases these plastids may be reduced in their metabolic and/or photosynthetic capacity. Algae with complex plastids derived by secondary endosymbiosis of a red alga include the heterokonts, haptophytes, cryptomonads, and most dinoflagellates (= rhodoplasts). Those that endosymbiosed a green alga include the euglenids and chlorarachniophytes (= chloroplasts). The Apicomplexa, a phylum of obligate parasitic alveolates including the causative agents of malaria ( Plasmodium spp.), toxoplasmosis ( Toxoplasma gondii ), and many other human or animal diseases also harbor a complex plastid (although this organelle has been lost in some apicomplexans, such as Cryptosporidium parvum , which causes cryptosporidiosis). The 'apicoplast' is no longer capable of photosynthesis, but is an essential organelle, and a promising target for antiparasitic drug development.

Some dinoflagellates and sea slugs, in particular of the genus Elysia , take up algae as food and keep the plastid of the digested alga to profit from the photosynthesis; after a while, the plastids are also digested. This process is known as kleptoplasty, from the Greek, kleptes ( κλέπτης ), thief.

Plastid development cycle

An illustration of the stages of inter-conversion in plastids Plastid development cycle .jpg
An illustration of the stages of inter-conversion in plastids

In 1977 J.M Whatley proposed a plastid development cycle which said that plastid development is not always unidirectional but is instead a complicated cyclic process. Proplastids are the precursor of the more differentiated forms of plastids, as shown in the diagram to the right. [29]

See also

Notes

  1. Sometimes Ernst Haeckel is credited to coin the term plastid, but his "plastid" includes nucleated cells and anucleated "cytodes" [7] and thus totally different concept from the plastid in modern literature.

Related Research Articles

<span class="mw-page-title-main">Cell (biology)</span> Basic unit of many life forms

The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific function. The term comes from the Latin word cellula meaning 'small room'. Most cells are only visible under a microscope. Cells emerged on Earth about 4 billion years ago. All cells are capable of replication, protein synthesis, and motility.

<span class="mw-page-title-main">Chloroplast</span> Plant organelle that conducts photosynthesis

A chloroplast is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. Chloroplasts have a high concentration of chlorophyll pigments which capture the energy from sunlight and convert it to chemical energy and release oxygen. The chemical energy created is then used to make sugar and other organic molecules from carbon dioxide in a process called the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in some unicellular algae, up to 100 in plants like Arabidopsis and wheat.

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds like sugars, glycogen, cellulose and starches. To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

<span class="mw-page-title-main">Symbiogenesis</span> Evolutionary theory holding that eukaryotic organelles evolved through symbiosis with prokaryotes

Symbiogenesis is the leading evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms. The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells are descended from formerly free-living prokaryotes taken one inside the other in endosymbiosis. Mitochondria appear to be phylogenetically related to Rickettsiales bacteria, while chloroplasts are thought to be related to cyanobacteria.

<span class="mw-page-title-main">Glaucophyte</span> Division of algae

The glaucophytes, also known as glaucocystophytes or glaucocystids, are a small group of unicellular algae found in freshwater and moist terrestrial environments, less common today than they were during the Proterozoic. The stated number of species in the group varies from about 14 to 26. Together with the red algae (Rhodophyta) and the green algae plus land plants, they form the Archaeplastida.

<span class="mw-page-title-main">Thylakoid</span> Membrane enclosed compartments in chloroplasts and cyanobacteria

Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana. Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment.

<span class="mw-page-title-main">Chromista</span> Eukaryotic biological kingdom

Chromista is a proposed but polyphyletic biological kingdom, refined from the Chromalveolata, consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Green algae</span> Paraphyletic group of eukaryotes

The green algae are a group of chlorophyll-containing autotrophic eukaryotes consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep within the charophytes as a sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid (spherical), and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae, many of which live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

<span class="mw-page-title-main">Elaioplast</span> Part of a plant

Elaioplasts are one of the three possible forms of leucoplasts, sometimes broadly referred to as such. The main function of elaioplasts is synthesis and storage of fatty acids, terpenes, and other lipids, and they can be found in the embryonic leaves of certain plants, as well as the anthers of many flowering plants.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<span class="mw-page-title-main">Proteinoplast</span> Organelles in plant cells

Proteinoplasts are specialized organelles found only in plant cells. Proteinoplasts belong to a broad category of organelles known as plastids. Plastids are specialized double-membrane organelles found in plant cells. Plastids perform a variety of functions such as metabolism of energy, and biological reactions. There are multiple types of plastids recognized including Leucoplasts, Chromoplasts, and Chloroplasts. Plastids are broken up into different categories based on characteristics such as size, function and physical traits. Chromoplasts help to synthesize and store large amounts of carotenoids. Chloroplasts are photosynthesizing structures that help to make light energy for the plant. Leucoplasts are a colorless type of plastid which means that no photosynthesis occurs here. The colorless pigmentation of the leucoplast is due to not containing the structural components of thylakoids unlike what is found in chloroplasts and chromoplasts that gives them their pigmentation. From leucoplasts stems the subtype, proteinoplasts, which contain proteins for storage. They contain crystalline bodies of protein and can be the sites of enzyme activity involving those proteins. Proteinoplasts are found in many seeds, such as brazil nuts, peanuts and pulses. Although all plastids contain high concentrations of protein, proteinoplasts were identified in the 1960s and 1970s as having large protein inclusions that are visible with both light microscopes and electron microscopes. Other subtypes of Leucoplasts include amyloplast, and elaioplasts. Amyloplasts help to store and synthesize starch molecules found in plants, while elaioplasts synthesize and store lipids in plant cells.

<i>Paulinella</i> Genus of single-celled organisms

Paulinella is a genus of at least eleven species including both freshwater and marine amoeboids. Like many members of euglyphids it is covered by rows of siliceous scales, and use filose pseudopods to crawl over the substrate of the benthic zone.

The CoRR hypothesis states that the location of genetic information in cytoplasmic organelles permits regulation of its expression by the reduction-oxidation ("redox") state of its gene products.

<i>Guillardia</i> Genus of single-celled organisms

Guillardia is a genus of marine biflagellate cryptomonad algae with a plastid obtained through secondary endosymbiosis of a red alga.

<span class="mw-page-title-main">Chloroplast DNA</span> DNA located in cellular organelles called chloroplasts

Chloroplast DNA (cpDNA), also known as plastid DNA (ptDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid, contain a genome separate from that in the cell nucleus. The existence of chloroplast DNA was identified biochemically in 1959, and confirmed by electron microscopy in 1962. The discoveries that the chloroplast contains ribosomes and performs protein synthesis revealed that the chloroplast is genetically semi-autonomous. The first complete chloroplast genome sequences were published in 1986, Nicotiana tabacum (tobacco) by Sugiura and colleagues and Marchantia polymorpha (liverwort) by Ozeki et al. Since then, tens of thousands of chloroplast genomes from various species have been sequenced.

<span class="mw-page-title-main">Picozoa</span> Phylum of marine unicellular heterotrophic eukaryotes

Picozoa, Picobiliphyta, Picobiliphytes, or Biliphytes are protists of a phylum of marine unicellular heterotrophic eukaryotes with a size of less than about 3 micrometers. They were formerly treated as eukaryotic algae and the smallest member of photosynthetic picoplankton before it was discovered they do not perform photosynthesis. The first species identified therein is Picomonas judraskeda. They probably belong in the Archaeplastida as sister of the Rhodophyta.

<span class="mw-page-title-main">Floridean starch</span> Type of storage glucan

Floridean starch is a type of a storage glucan found in glaucophytes and in red algae, in which it is usually the primary sink for fixed carbon from photosynthesis. It is found in grains or granules in the cell's cytoplasm and is composed of an α-linked glucose polymer with a degree of branching intermediate between amylopectin and glycogen, though more similar to the former. The polymers that make up floridean starch are sometimes referred to as "semi-amylopectin".

<span class="mw-page-title-main">Plastid evolution</span> Evolution

A plastid is a membrane-bound organelle found in plants, algae and other eukaryotic organisms that contribute to the production of pigment molecules. Most plastids are photosynthetic, thus leading to color production and energy storage or production. There are many types of plastids in plants alone, but all plastids can be separated based on the number of times they have undergone endosymbiotic events. Currently there are three types of plastids; primary, secondary and tertiary. Endosymbiosis is reputed to have led to the evolution of eukaryotic organisms today, although the timeline is highly debated.

<span class="mw-page-title-main">Photoautotroph</span> Organisms that use light and inorganic carbon to produce organic materials

Photoautotrophs are organisms that can utilize light energy from sunlight and elements from inorganic compounds to produce organic materials needed to sustain their own metabolism. Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.

References

  1. Sato N (2007). "Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids". In Wise RR, Hoober JK (eds.). The Structure and Function of Plastids. Advances in Photosynthesis and Respiration. Vol. 23. Springer Netherlands. pp. 75–102. doi:10.1007/978-1-4020-4061-0_4. ISBN   978-1-4020-4060-3.
  2. Moore KR, Magnabosco C, Momper L, Gold DA, Bosak T, Fournier GP (2019). "An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids". Frontiers in Microbiology. 10: 1612. doi: 10.3389/fmicb.2019.01612 . PMC   6640209 . PMID   31354692.
  3. Vries, Jan de; Gould, Sven B. (2018-01-15). "The monoplastidic bottleneck in algae and plant evolution". Journal of Cell Science. 131 (2): jcs203414. doi: 10.1242/jcs.203414 . ISSN   0021-9533. PMID   28893840.
  4. 1 2 Marin, Birger; Nowack, Eva CM; Glöckner, Gernot; Melkonian, Michael (2007-06-05). "The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like γ-proteobacterium". BMC Evolutionary Biology. 7 (1): 85. Bibcode:2007BMCEE...7...85M. doi: 10.1186/1471-2148-7-85 . PMC   1904183 . PMID   17550603.
  5. 1 2 Ochoa de Alda, Jesús A. G.; Esteban, Rocío; Diago, María Luz; Houmard, Jean (2014-01-29). "The plastid ancestor originated among one of the major cyanobacterial lineages". Nature Communications. 5 (1): 4937. Bibcode:2014NatCo...5.4937O. doi: 10.1038/ncomms5937 . ISSN   2041-1723. PMID   25222494.
  6. Schimper, A.F.W. (1882) "Ueber die Gestalten der Stärkebildner und Farbkörper" Botanisches Centralblatt 12(5): 175–178.
  7. Haeckel, E. (1866) "Morphologische Individuen erster Ordnung: Plastiden oder Plasmastücke" in his Generelle Morphologie der Organismen Bd. 1, pp. 269-289
  8. Picozoans Are Algae After All: Study | The Scientist Magazine®
  9. Kolattukudy, P.E. (1996) "Biosynthetic pathways of cutin and waxes, and their sensitivity to environmental stresses", pp. 83–108 in: Plant Cuticles. G. Kerstiens (ed.), BIOS Scientific publishers Ltd., Oxford
  10. 1 2 Wise, Robert R. (2006). "The Diversity of Plastid Form and Function". The Structure and Function of Plastids. Advances in Photosynthesis and Respiration. Vol. 23. Springer. pp. 3–26. doi:10.1007/978-1-4020-4061-0_1. ISBN   978-1-4020-4060-3.
  11. Wicke, S; Schneeweiss, GM; dePamphilis, CW; Müller, KF; Quandt, D (2011). "The evolution of the plastid chromosome in land plants: gene content, gene order, gene function". Plant Molecular Biology. 76 (3–5): 273–297. doi: 10.1007/s11103-011-9762-4 . PMC   3104136 . PMID   21424877.
  12. Wicke, S; Naumann, J (2018). "Molecular evolution of plastid genomes in parasitic flowering plants". Advances in Botanical Research. 85: 315–347. doi:10.1016/bs.abr.2017.11.014. ISBN   9780128134573.
  13. 1 2 "Plants Without Plastid Genomes". The Scientist. Retrieved 2015-09-26.
  14. Barbrook AC, Howe CJ, Purton S (February 2006). "Why are plastid genomes retained in non-photosynthetic organisms?". Trends in Plant Science. 11 (2): 101–8. doi:10.1016/j.tplants.2005.12.004. PMID   16406301.
  15. "DNA of Giant 'Corpse Flower' Parasite Surprises Biologists". April 2021.
  16. Viola R, Nyvall P, Pedersén M (July 2001). "The unique features of starch metabolism in red algae". Proceedings. Biological Sciences. 268 (1474): 1417–22. doi:10.1098/rspb.2001.1644. PMC   1088757 . PMID   11429143.
  17. 1 2 Lhee, Duckhyun; Ha, Ji-San; Kim, Sunju; Park, Myung Gil; Bhattacharya, Debashish; Yoon, Hwan Su (2019-02-22). "Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species - Scientific Reports". Scientific Reports. 9 (1): 2560. Bibcode:2019NatSR...9.2560L. doi:10.1038/s41598-019-38621-8. PMC   6384880 . PMID   30796245.
  18. 1 2 Gabr, Arwa; Grossman, Arthur R.; Bhattacharya, Debashish (2020-05-05). Palenik, B. (ed.). "Paulinella , a model for understanding plastid primary endosymbiosis". Journal of Phycology. 56 (4). Wiley: 837–843. Bibcode:2020JPcgy..56..837G. doi:10.1111/jpy.13003. ISSN   0022-3646. PMC   7734844 . PMID   32289879.
  19. Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (2017-09-12). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences. 114 (37): E7737 –E7745. Bibcode:2017PNAS..114E7737S. doi: 10.1073/pnas.1620089114 . ISSN   0027-8424. PMC   5603991 . PMID   28808007.
  20. Luis Delaye; Cecilio Valadez-Cano; Bernardo Pérez-Zamorano (15 March 2016). "How Really Ancient Is Paulinella Chromatophora?". PLOS Currents . 8. doi: 10.1371/CURRENTS.TOL.E68A099364BB1A1E129A17B4E06B0C6B . ISSN   2157-3999. PMC   4866557 . PMID   28515968. Wikidata   Q36374426.
  21. Robison, T. A., Oh, Z. G., Lafferty, D., Xu, X., Villarreal, J. C. A., Gunn, L. H., Li, F.-W. (3 January 2025). "Hornworts reveal a spatial model for pyrenoid-based CO2-concentrating mechanisms in land plants". Nature Plants. Nature Publishing Group: 1–11. doi:10.1038/s41477-024-01871-0. ISSN   2055-0278.
  22. Zhang Q (March 2010). "Why does biparental plastid inheritance revive in angiosperms?". Journal of Plant Research. 123 (2): 201–6. Bibcode:2010JPlR..123..201Z. doi:10.1007/s10265-009-0291-z. PMID   20052516. S2CID   5108244.
  23. Kumar RA, Oldenburg DJ, Bendich AJ (December 2014). "Changes in DNA damage, molecular integrity, and copy number for plastid DNA and mitochondrial DNA during maize development". Journal of Experimental Botany. 65 (22): 6425–39. doi:10.1093/jxb/eru359. PMC   4246179 . PMID   25261192.
  24. Oldenburg DJ, Bendich AJ (2015). "DNA maintenance in plastids and mitochondria of plants". Frontiers in Plant Science. 6: 883. doi: 10.3389/fpls.2015.00883 . PMC   4624840 . PMID   26579143.
  25. Odahara M, Kishita Y, Sekine Y (August 2017). "MSH1 maintains organelle genome stability and genetically interacts with RECA and RECG in the moss Physcomitrella patens". The Plant Journal. 91 (3): 455–465. doi: 10.1111/tpj.13573 . PMID   28407383.
  26. Ochoa de Alda JA, Esteban R, Diago ML, Houmard J (September 2014). "The plastid ancestor originated among one of the major cyanobacterial lineages". Nature Communications. 5: 4937. Bibcode:2014NatCo...5.4937O. doi: 10.1038/ncomms5937 . PMID   25222494.
  27. Hedges SB, Blair JE, Venturi ML, Shoe JL (January 2004). "A molecular timescale of eukaryote evolution and the rise of complex multicellular life". BMC Evolutionary Biology. 4: 2. doi: 10.1186/1471-2148-4-2 . PMC   341452 . PMID   15005799.
  28. Chan CX, Bhattachary D (2010). "The Origin of Plastids". Nature Education. 3 (9): 84.
  29. Whatley, Jean M. (1978). "A Suggested Cycle of Plastid Developmental Interrelationships". The New Phytologist. 80 (3): 489–502. doi: 10.1111/j.1469-8137.1978.tb01581.x . ISSN   0028-646X. JSTOR   2431207.

Further reading