Non-vascular plant

Last updated
Mosses are examples of non-vascular plants. Muschio Bryophyta in Val Vigezzo - Toceno VCO, Piedmont, Italy 2020-09-12.jpg
Mosses are examples of non-vascular plants.

Non-vascular plants are plants without a vascular system consisting of xylem and phloem. Instead, they may possess simpler tissues that have specialized functions for the internal transport of water.[ citation needed ]

Non-vascular plants include two distantly related groups:

These groups are sometimes called "lower plants", referring to their status as the earliest plant groups to evolve, but the usage is imprecise since both groups are polyphyletic and may be used to include vascular cryptogams, such as the ferns and fern allies that reproduce using spores. Non-vascular plants are often among the first species to move into new and inhospitable territories, along with prokaryotes and protists, and thus function as pioneer species.[ citation needed ]

Mosses and leafy liverworts have structures called phyllids that resemble leaves, but only consist of single sheets of cells with no internal air spaces, no cuticle or stomata, and no xylem or phloem. Consequently, phyllids are unable to control the rate of water loss from their tissues and are said to be poikilohydric. Some liverworts, such as Marchantia , have a cuticle, and the sporophytes of mosses have both cuticles and stomata, which were important in the evolution of land plants. [3]

All land plants have a life cycle with an alternation of generations between a diploid sporophyte and a haploid gametophyte, but in all non-vascular land plants, the gametophyte generation is dominant. In these plants, the sporophytes grow from and are dependent on gametophytes for supply of water and mineral nutrients and photosynthate, the products of photosynthesis.

Non-vascular plants play crucial roles in their environments. They often dominate certain biomes such as mires, bogs and lichen tundra where these plants perform primary ecosystem functions. Additionally, in bogs mosses host microbial communities which help support the functioning of peatlands. This provides essential goods and services to humans such as global carbon sinks, water purification systems, fresh water reserves as well as biodiversity and peat resources. This is achieved through nutrient acquisition from dominant plants under nutrient-stressed conditions. [4]

Non-vascular plants can also play important roles in other biomes such as deserts, tundra and alpine regions. They have been shown to contribute to soil stabilization, nitrogen fixation, carbon assimilation etc. These are all crucial components in an ecosystem in which non-vascular plants play a pivotal role. [5]

Related Research Articles

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Plant cell</span> Type of eukaryotic cell present in green plants

Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae. Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or centrioles, except in the gametes, and a unique method of cell division involving the formation of a cell plate or phragmoplast that separates the new daughter cells.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<span class="mw-page-title-main">Vascular plant</span> Clade of plants with xylem and phloem

Vascular plants, also called tracheophytes or collectively tracheophyta, are plants that have lignified tissues for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue to conduct products of photosynthesis. The group includes most land plants other than mosses.

<span class="mw-page-title-main">Moss</span> Division of non-vascular land plants

Mosses are small, non-vascular flowerless plants in the taxonomic division Bryophytasensu stricto. Bryophyta may also refer to the parent group bryophytes, which comprise liverworts, mosses, and hornworts. Mosses typically form dense green clumps or mats, often in damp or shady locations. The individual plants are usually composed of simple leaves that are generally only one cell thick, attached to a stem that may be branched or unbranched and has only a limited role in conducting water and nutrients. Although some species have conducting tissues, these are generally poorly developed and structurally different from similar tissue found in vascular plants. Mosses do not have seeds and after fertilisation develop sporophytes with unbranched stalks topped with single capsules containing spores. They are typically 0.2–10 cm (0.1–3.9 in) tall, though some species are much larger. Dawsonia, the tallest moss in the world, can grow to 50 cm (20 in) in height. There are approximately 12,000 species.

<span class="mw-page-title-main">Bryophyte</span> Terrestrial plants that lack vascular tissue

Bryophytes are a group of land plants, sometimes treated as a taxonomic division, that contains three groups of non-vascular land plants (embryophytes): the liverworts, hornworts, and mosses. In the strict sense, the division Bryophyta consists of the mosses only. Bryophytes are characteristically limited in size and prefer moist habitats although some species can survive in drier environments. The bryophytes consist of about 20,000 plant species. Bryophytes produce enclosed reproductive structures, but they do not produce flowers or seeds. They reproduce sexually by spores and asexually by fragmentation or the production of gemmae. Though bryophytes were considered a paraphyletic group in recent years, almost all of the most recent phylogenetic evidence supports the monophyly of this group, as originally classified by Wilhelm Schimper in 1879. The term bryophyte comes from Ancient Greek βρύον (brúon) 'tree moss, liverwort' and φυτόν (phutón) 'plant'.

<span class="mw-page-title-main">Embryophyte</span> Subclade of green plants, also known as land plants

The embryophytes are a clade of plants, also known as Embryophyta or land plants. They are the most familiar group of photoautotrophs that make up the vegetation on Earth's dry lands and wetlands. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of freshwater charophyte green algae as a sister taxon of Charophyceae, Coleochaetophyceae and Zygnematophyceae. Embryophytes consist of the bryophytes and the polysporangiophytes. Living embryophytes include hornworts, liverworts, mosses, lycophytes, ferns, gymnosperms and angiosperms. Embryophytes have diplobiontic life cycles.

<span class="mw-page-title-main">Marchantiophyta</span> Botanical division of non-vascular land plants

The Marchantiophyta are a division of non-vascular land plants commonly referred to as hepatics or liverworts. Like mosses and hornworts, they have a gametophyte-dominant life cycle, in which cells of the plant carry only a single set of genetic information.

<span class="mw-page-title-main">Sporophyte</span> Diploid multicellular stage in the life cycle of a plant or alga

A sporophyte is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase.

<span class="mw-page-title-main">Hornwort</span> Division of non-vascular land plants with horn-shaped sporophytes

Hornworts are a group of non-vascular Embryophytes constituting the division Anthocerotophyta. The common name refers to the elongated horn-like structure, which is the sporophyte. As in mosses and liverworts, hornworts have a gametophyte-dominant life cycle, in which cells of the plant carry only a single set of genetic information; the flattened, green plant body of a hornwort is the gametophyte stage of the plant.

<i>Conocephalum</i> Genus of plants

Conocephalum is a genus of complex thalloid liverworts in the order Marchantiales and is the only extant genus in the family Conocephalaceae. Some species of Conocephalum are assigned to the Conocephalum conicum complex, which includes several cryptic species. Conocephalum species are large liverworts with distinct patterns on the upper thallus, giving the appearance of snakeskin. The species Conocephalum conicum is named for its cone-shaped reproductive structures, called archegoniophores. Common names include snakeskin liverwort, great scented liverwort and cat-tongue liverwort.

Monoicy is a sexual system in haploid plants where both sperm and eggs are produced on the same gametophyte, in contrast with dioicy, where each gametophyte produces only sperm or eggs but never both. Both monoicous and dioicous gametophytes produce gametes in gametangia by mitosis rather than meiosis, so that sperm and eggs are genetically identical with their parent gametophyte.

<span class="mw-page-title-main">Plant cuticle</span> Waterproof covering of aerial plant organs

A plant cuticle is a protecting film covering the outermost skin layer (epidermis) of leaves, young shoots and other aerial plant organs that have no periderm. The film consists of lipid and hydrocarbon polymers infused with wax, and is synthesized exclusively by the epidermal cells.

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

<i>Dawsonia</i> (plant) Genus of mosses

Dawsonia is a genus of acrocarpous mosses. Dawsonia, along with other members of the order Polytrichales, are taller than most mosses and have thicker leaves. Their sporophytes have conducting systems analogous to those of vascular plants. Dawsonia superba is found in New Zealand, Australia and New Guinea. D. longifolia is found in the Philippines, Indonesia, Malaysia, and Australia. There is uncertainty as to whether D. superba and D. longifolia are actually distinct species.

<i>Hypnodendron comosum</i> Species of moss

Hypnodendron comosum, commonly known as palm moss or palm tree moss, is a ground moss which can be divided into two varieties: Hypnodendron comosum var. comosum and Hypnodendron comosum var. sieberi. Both Hypnodendron varieties most commonly grow in damp locations in the temperate and tropical rainforests of New South Wales, Victoria, and Tasmania in southern Australia and in New Zealand.

<i>Pogonatum urnigerum</i> Species of moss

Pogonatum urnigerum is a species of moss in the family Polytrichaceae, commonly called urn haircap. The name comes from "urna" meaning "urn" and "gerere" meaning "to bear" which is believed to be a reference made towards the plant's wide-mouthed capsule. It can be found on gravelly banks or similar habitats and can be identified by the blue tinge to the overall green colour. The stem of this moss is wine red and it has rhizoids that keep the moss anchored to substrates. It is an acrocarpous moss that grows vertically with an archegonium borne at the top of each fertilized female gametophyte shoot which develops an erect sporophyte.

<i>Polytrichum strictum</i> Species of moss

Polytrichum strictum, commonly known as bog haircap moss or strict haircap, is an evergreen and perennial species of moss native to Sphagnum bogs and other moist habitats in temperate climates. It has a circumboreal distribution, and is also found in South America and Antarctica.

<i>Polytrichastrum formosum</i> Species of moss

Polytrichastrum formosum, commonly known as the bank haircap moss, is a species of moss belonging to the family Polytrichaceae.

Dioicy is a sexual system in non-vascular plants where archegonia and antheridia are produced on separate gametophytes. It is one of the two main sexual systems in bryophytes, the other being monoicy. Both dioicous and monoicous gametophytes produce gametes in gametangia by mitosis rather than meiosis, so that sperm and eggs are genetically identical with their parent gametophyte.

References

  1. Copeland, H.F. (1956). The classification of lower organisms. Palo Alto: Pacific Books.
  2. Adl, S.M.; et al. (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi: 10.1111/j.1550-7408.2005.00053.x . PMID   16248873. S2CID   8060916.
  3. Glime (April 19, 2015). "WATER RELATIONS: PLANT STRATEGIES" (PDF). Bryophyte Ecology. Archived (PDF) from the original on March 28, 2016. Retrieved December 8, 2016.
  4. Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G.; Müller, Henry; Berg, Gabriele (2014). "The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions". Molecular Ecology. 23 (18): 4498–4510. Bibcode:2014MolEc..23.4498B. doi:10.1111/mec.12885. PMID   25113243.
  5. St. Martin, Philippe; Mallik, Azim U. (2017). "The status of non-vascular plants in trait-based ecosystem function studies". Perspectives in Plant Ecology, Evolution and Systematics. 27: 1–8. Bibcode:2017PPEES..27....1S. doi:10.1016/j.ppees.2017.04.002.